論文の概要: Parameter estimation for WMTI-Watson model of white matter using
encoder-decoder recurrent neural network
- arxiv url: http://arxiv.org/abs/2203.00595v2
- Date: Wed, 2 Mar 2022 09:26:49 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-03 12:06:28.829516
- Title: Parameter estimation for WMTI-Watson model of white matter using
encoder-decoder recurrent neural network
- Title(参考訳): エンコーダデコーダリカレントニューラルネットワークを用いた白色物質のWMTI-Watsonモデルのパラメータ推定
- Authors: Yujian Diao and Ileana Ozana Jelescu
- Abstract要約: 本研究では,ラットおよびヒト脳のデータセット上でのNLLS,RNN法および多層パーセプトロン(MLP)の性能を評価する。
提案手法は,NLLSよりも計算時間を大幅に短縮できるという利点を示した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Biophysical modelling of the diffusion MRI signal provides estimates of
specific microstructural tissue properties. Although nonlinear optimization
such as non-linear least squares (NLLS) is the most widespread method for model
estimation, it suffers from local minima and high computational cost. Deep
Learning approaches are steadily replacing NL fitting, but come with the
limitation that the model needs to be retrained for each acquisition protocol
and noise level. The White Matter Tract Integrity (WMTI)-Watson model was
proposed as an implementation of the Standard Model of diffusion in white
matter that estimates model parameters from the diffusion and kurtosis tensors
(DKI). Here we proposed a deep learning approach based on the encoder-decoder
recurrent neural network (RNN) to increase the robustness and accelerate the
parameter estimation of WMTI-Watson. We use an embedding approach to render the
model insensitive to potential differences in distributions between training
data and experimental data. This RNN-based solver thus has the advantage of
being highly efficient in computation and more readily translatable to other
datasets, irrespective of acquisition protocol and underlying parameter
distributions as long as DKI was pre-computed from the data. In this study, we
evaluated the performance of NLLS, the RNN-based method and a multilayer
perceptron (MLP) on synthetic and in vivo datasets of rat and human brain. We
showed that the proposed RNN-based fitting approach had the advantage of highly
reduced computation time over NLLS (from hours to seconds), with similar
accuracy and precision but improved robustness, and superior translatability to
new datasets over MLP.
- Abstract(参考訳): 拡散MRI信号の生体物理モデリングは、特定のミクロ組織特性を推定する。
非線形最小二乗法(NLLS)のような非線形最適化はモデル推定において最も広く使われている手法であるが、局所最小化と計算コストに悩まされている。
ディープラーニングアプローチは、NLフィッティングを着実に置き換えているが、各取得プロトコルとノイズレベルに対してモデルを再トレーニングする必要があるという制限が伴っている。
wmti(white matter tract integrity)-watsonモデル(wmti-watson model)は、拡散テンソルとクルトシステンソル(dki)からモデルパラメータを推定する白色物質における拡散の標準モデルの実装として提案された。
本稿では,エンコーダ・デコーダ・リカレントニューラルネットワーク(RNN)に基づくディープラーニング手法を提案し,ロバスト性を高め,WMTI-Watsonのパラメータ推定を高速化する。
学習データと実験データとの分布の潜在的差異に影響を受けないモデルを作成するために埋め込み手法を用いる。
したがって、このRNNベースの解法は、DKIがデータから事前計算される限り、取得プロトコルや基礎となるパラメータ分布によらず、計算効率が高く、他のデータセットに容易に変換できるという利点がある。
本研究では,ラットおよびヒト脳の合成および生体内データセットにおけるNLLS,RNN法および多層パーセプトロン(MLP)の性能評価を行った。
提案手法は,NLLSよりも高速に計算時間を短縮し(数時間から秒),精度と精度はよく,ロバスト性は向上し,MLPより新しいデータセットへの変換性が向上した。
関連論文リスト
- A model for multi-attack classification to improve intrusion detection
performance using deep learning approaches [0.0]
ここでの目的は、悪意のある攻撃を識別するための信頼性の高い侵入検知メカニズムを作ることである。
ディープラーニングベースのソリューションフレームワークは、3つのアプローチから成り立っている。
最初のアプローチは、adamax、SGD、adagrad、adam、RMSprop、nadam、adadeltaといった7つの機能を持つLong-Short Term Memory Recurrent Neural Network (LSTM-RNN)である。
モデルは特徴を自己学習し、攻撃クラスをマルチアタック分類として分類する。
論文 参考訳(メタデータ) (2023-10-25T05:38:44Z) - Short-term power load forecasting method based on CNN-SAEDN-Res [12.733504847643005]
本稿では、畳み込みニューラルネットワーク(CNN)、自己アテンションエンコーダデコーダネットワーク(SAEDN)、残差リファインメント(Res)に基づく短期負荷予測手法を提案する。
提案手法は予測精度と予測安定性の点で利点がある。
論文 参考訳(メタデータ) (2023-09-02T11:36:50Z) - NAF: Neural Attenuation Fields for Sparse-View CBCT Reconstruction [79.13750275141139]
本稿では,スパースビューCBCT再構成のための新規かつ高速な自己教師型ソリューションを提案する。
所望の減衰係数は、3次元空間座標の連続関数として表現され、完全に接続されたディープニューラルネットワークによってパラメータ化される。
ハッシュ符号化を含む学習ベースのエンコーダが採用され、ネットワークが高周波の詳細をキャプチャするのに役立つ。
論文 参考訳(メタデータ) (2022-09-29T04:06:00Z) - Bayesian Neural Network Language Modeling for Speech Recognition [59.681758762712754]
長期記憶リカレントニューラルネットワーク(LSTM-RNN)とトランスフォーマーで表される最先端のニューラルネットワーク言語モデル(NNLM)は非常に複雑になりつつある。
本稿では,LSTM-RNN と Transformer LM の基盤となる不確実性を考慮するために,ベイズ学習フレームワークの全体構造を提案する。
論文 参考訳(メタデータ) (2022-08-28T17:50:19Z) - Truncated tensor Schatten p-norm based approach for spatiotemporal
traffic data imputation with complicated missing patterns [77.34726150561087]
本研究は, モード駆動繊維による3症例の欠失を含む, 4症例の欠失パターンについて紹介する。
本モデルでは, 目的関数の非性にもかかわらず, 乗算器の交互データ演算法を統合することにより, 最適解を導出する。
論文 参考訳(メタデータ) (2022-05-19T08:37:56Z) - Supervised Training of Siamese Spiking Neural Networks with Earth's
Mover Distance [4.047840018793636]
本研究は,高可逆性シアムニューラルネットモデルをイベントデータ領域に適応させる。
我々はスパイク・トレインとスパイク・ニューラル・ネットワーク(SNN)の間の地球のモーバー距離を最適化するための教師付きトレーニング・フレームワークを導入する。
論文 参考訳(メタデータ) (2022-02-20T00:27:57Z) - ANNETTE: Accurate Neural Network Execution Time Estimation with Stacked
Models [56.21470608621633]
本稿では,アーキテクチャ検索を対象ハードウェアから切り離すための時間推定フレームワークを提案する。
提案手法は,マイクロカーネルと多層ベンチマークからモデルの集合を抽出し,マッピングとネットワーク実行時間推定のためのスタックモデルを生成する。
生成した混合モデルの推定精度と忠実度, 統計モデルとルーフラインモデル, 評価のための洗練されたルーフラインモデルを比較した。
論文 参考訳(メタデータ) (2021-05-07T11:39:05Z) - Compressing LSTM Networks by Matrix Product Operators [7.395226141345625]
Long Short Term Memory(LSTM)モデルは、多くの最先端自然言語処理(NLP)と音声強調(SE)アルゴリズムの構築ブロックである。
ここでは、量子多体物理学における量子状態の局所的相関を記述するMPO分解を紹介する。
LSTMモデルを置き換えるために,行列積演算子(MPO)に基づくニューラルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-12-22T11:50:06Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
スパイキングニューラルネットワーク(SNN)は、時間的スパイクパターンを用いて情報を表現し、伝達する。
本稿では,情報符号化,シナプス可塑性,意思決定におけるスパイクタイミングダイナミクスの寄与について検討し,将来のDeepSNNやニューロモルフィックハードウェアシステムの設計への新たな視点を提供する。
論文 参考訳(メタデータ) (2020-03-26T11:13:07Z) - Model Fusion via Optimal Transport [64.13185244219353]
ニューラルネットワークのための階層モデル融合アルゴリズムを提案する。
これは、不均一な非i.d.データに基づいてトレーニングされたニューラルネットワーク間での"ワンショット"な知識伝達に成功していることを示す。
論文 参考訳(メタデータ) (2019-10-12T22:07:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。