論文の概要: Deep-Unrolling Multidimensional Harmonic Retrieval Algorithms on Neuromorphic Hardware
- arxiv url: http://arxiv.org/abs/2412.04008v1
- Date: Thu, 05 Dec 2024 09:41:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-06 14:42:47.426085
- Title: Deep-Unrolling Multidimensional Harmonic Retrieval Algorithms on Neuromorphic Hardware
- Title(参考訳): ニューロモルフィックハードウェアを用いた多次元高調波検索アルゴリズム
- Authors: Vlad C. Andrei, Alexandru P. Drăguţoiu, Gabriel Béna, Mahmoud Akl, Yin Li, Matthias Lohrmann, Ullrich J. Mönich, Holger Boche,
- Abstract要約: 本稿では,高精度かつエネルギー効率の高い単発多次元高調波検索のための変換に基づくニューロモルフィックアルゴリズムの可能性について検討する。
複雑な値の畳み込み層と活性化をスパイクニューラルネットワーク(SNN)に変換する新しい手法を開発した。
変換されたSNNは、元のCNNに比べて性能が低下し、ほぼ5倍の電力効率を実現している。
- 参考スコア(独自算出の注目度): 78.17783007774295
- License:
- Abstract: This paper explores the potential of conversion-based neuromorphic algorithms for highly accurate and energy-efficient single-snapshot multidimensional harmonic retrieval (MHR). By casting the MHR problem as a sparse recovery problem, we devise the currently proposed, deep-unrolling-based Structured Learned Iterative Shrinkage and Thresholding (S-LISTA) algorithm to solve it efficiently using complex-valued convolutional neural networks with complex-valued activations, which are trained using a supervised regression objective. Afterward, a novel method for converting the complex-valued convolutional layers and activations into spiking neural networks (SNNs) is developed. At the heart of this method lies the recently proposed Few Spikes (FS) conversion, which is extended by modifying the neuron model's parameters and internal dynamics to account for the inherent coupling between real and imaginary parts in complex-valued computations. Finally, the converted SNNs are mapped onto the SpiNNaker2 neuromorphic board, and a comparison in terms of estimation accuracy and power efficiency between the original CNNs deployed on an NVIDIA Jetson Xavier and the SNNs is being conducted. The measurement results show that the converted SNNs achieve almost five-fold power efficiency at moderate performance loss compared to the original CNNs.
- Abstract(参考訳): 本稿では, 高精度かつエネルギー効率の高い単発多次元高調波検索(MHR)のための変換に基づくニューロモルフィックアルゴリズムの可能性について検討する。
MHR問題をスパースリカバリ問題としてキャストすることで、現在提案されている、深層学習に基づく構造的反復収縮と閾値保持(S-LISTA)アルゴリズムを考案し、複雑な値のアクティベーションを持つ複雑な畳み込みニューラルネットワークを用いて効率よく解決し、教師付き回帰目標を用いて訓練する。
その後、複雑な値の畳み込み層と活性化をスパイクニューラルネットワーク(SNN)に変換する新しい手法を開発した。
この手法の核心には最近提案されたFew Spikes (FS)変換があり、これは複雑な数値計算における実部と虚部の間の固有結合を考慮に入れ、ニューロンモデルのパラメータと内部ダイナミクスを変更することによって拡張される。
最後に、変換されたSNNをSpiNNaker2ニューロモルフィックボードにマッピングし、NVIDIA Jetson Xavierにデプロイされた元のCNNとSNNとの推定精度と電力効率の比較を行う。
その結果、変換されたSNNは、元のCNNと比較して、性能損失が緩やかで、ほぼ5倍の電力効率を達成できた。
関連論文リスト
- Randomized Forward Mode Gradient for Spiking Neural Networks in Scientific Machine Learning [4.178826560825283]
スパイキングニューラルネットワーク(SNN)は、ディープニューラルネットワークの階層的学習能力とスパイクベースの計算のエネルギー効率を組み合わせた、機械学習における有望なアプローチである。
SNNの伝統的なエンドツーエンドトレーニングは、しばしばバックプロパゲーションに基づいており、重み更新はチェーンルールによって計算された勾配から導かれる。
この手法は, 生体適合性に限界があり, ニューロモルフィックハードウェアの非効率性のため, 課題に遭遇する。
本研究では,SNNの代替トレーニング手法を導入する。後方伝搬の代わりに,前方モード内での重量摂動手法を活用する。
論文 参考訳(メタデータ) (2024-11-11T15:20:54Z) - Spiking Neural Networks with Consistent Mapping Relations Allow High-Accuracy Inference [9.667807887916132]
スパイクベースのニューロモルフィックハードウェアは、低エネルギー消費と効率的な推論において大きな可能性を証明している。
ディープスパイクニューラルネットワークの直接トレーニングは困難であり、変換ベースの手法では未解決の変換エラーのため、かなりの遅延が必要になる。
論文 参考訳(メタデータ) (2024-06-08T06:40:00Z) - A predictive physics-aware hybrid reduced order model for reacting flows [65.73506571113623]
反応流問題の解法として,新しいハイブリッド型予測次数モデル (ROM) を提案する。
自由度は、数千の時間的点から、対応する時間的係数を持ついくつかのPODモードへと減少する。
時間係数を予測するために、2つの異なるディープラーニングアーキテクチャがテストされている。
論文 参考訳(メタデータ) (2023-01-24T08:39:20Z) - Variational Tensor Neural Networks for Deep Learning [0.0]
深部ニューラルネットワーク(NN)へのテンソルネットワーク(TN)の統合を提案する。
これにより、大きなパラメータ空間上で効率的にトレーニングできるスケーラブルなテンソルニューラルネットワーク(TNN)アーキテクチャが実現される。
我々はTNNモデルを設計し、線形および非線形回帰、データ分類、MNIST手書き桁の画像認識のためのベンチマーク結果を提供することにより、提案手法の精度と効率を検証した。
論文 参考訳(メタデータ) (2022-11-26T20:24:36Z) - Converting Artificial Neural Networks to Spiking Neural Networks via
Parameter Calibration [21.117214351356765]
スパイキングニューラルネットワーク(SNN)は、次世代ニューラルネットワークの1つとして認識されている。
本研究では、ANNの重みをSNNにコピー&ペーストするだけで、必然的にアクティベーションミスマッチが発生することを論じる。
そこで本研究では,アクティベーションミスマッチを最小限に抑えるため,パラメータの調整を行う層ワイドパラメータキャリブレーションアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-05-06T18:22:09Z) - Training Feedback Spiking Neural Networks by Implicit Differentiation on
the Equilibrium State [66.2457134675891]
スパイキングニューラルネットワーク(英: Spiking Neural Network、SNN)は、ニューロモルフィックハードウェア上でエネルギー効率の高い実装を可能にする脳にインスパイアされたモデルである。
既存のほとんどの手法は、人工ニューラルネットワークのバックプロパゲーションフレームワークとフィードフォワードアーキテクチャを模倣している。
本稿では,フォワード計算の正逆性に依存しない新しいトレーニング手法を提案する。
論文 参考訳(メタデータ) (2021-09-29T07:46:54Z) - LocalDrop: A Hybrid Regularization for Deep Neural Networks [98.30782118441158]
本稿では,ローカルラデマチャー複雑性を用いたニューラルネットワークの正規化のための新しい手法であるLocalDropを提案する。
フルコネクテッドネットワーク(FCN)と畳み込みニューラルネットワーク(CNN)の両方のための新しい正規化機能は、ローカルラデマチャー複雑さの上限提案に基づいて開発されました。
論文 参考訳(メタデータ) (2021-03-01T03:10:11Z) - Optimal Conversion of Conventional Artificial Neural Networks to Spiking
Neural Networks [0.0]
spiking neural networks (snns) は生物学に触発されたニューラルネットワーク (anns) である。
しきい値バランスとソフトリセット機構を組み合わせることで、重みをターゲットSNNに転送する新しい戦略パイプラインを提案する。
提案手法は,SNNのエネルギーとメモリの制限によるサポートを向上し,組込みプラットフォームに組み込むことが期待できる。
論文 参考訳(メタデータ) (2021-02-28T12:04:22Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
スパイキングニューラルネットワーク(SNN)は、時間的スパイクパターンを用いて情報を表現し、伝達する。
本稿では,情報符号化,シナプス可塑性,意思決定におけるスパイクタイミングダイナミクスの寄与について検討し,将来のDeepSNNやニューロモルフィックハードウェアシステムの設計への新たな視点を提供する。
論文 参考訳(メタデータ) (2020-03-26T11:13:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。