論文の概要: Image-based material analysis of ancient historical documents
- arxiv url: http://arxiv.org/abs/2203.01042v1
- Date: Wed, 2 Mar 2022 11:39:22 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-03 15:42:12.118156
- Title: Image-based material analysis of ancient historical documents
- Title(参考訳): 古文書の画像に基づく資料分析
- Authors: Thomas Reynolds, Maruf A. Dhali, Lambert Schomaker
- Abstract要約: 本研究は、有名な歴史資料集『死海巻』の画像を用いて、写本の資料を分類する新しい方法を提案する。
多数決プロセスの変換を用いた二項分類システムは, この分類作業に有効であることが示されている。
このパイロットスタディは、パーチメントまたはパピルス材料から生成される限られた量の原稿に対して、最大97%の分類成功率を示す。
- 参考スコア(独自算出の注目度): 5.285396202883411
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Researchers continually perform corroborative tests to classify ancient
historical documents based on the physical materials of their writing surfaces.
However, these tests, often performed on-site, requires actual access to the
manuscript objects. The procedures involve a considerable amount of time and
cost, and can damage the manuscripts. Developing a technique to classify such
documents using only digital images can be very useful and efficient. In order
to tackle this problem, this study uses images of a famous historical
collection, the Dead Sea Scrolls, to propose a novel method to classify the
materials of the manuscripts. The proposed classifier uses the two-dimensional
Fourier Transform to identify patterns within the manuscript surfaces.
Combining a binary classification system employing the transform with a
majority voting process is shown to be effective for this classification task.
This pilot study shows a successful classification percentage of up to 97% for
a confined amount of manuscripts produced from either parchment or papyrus
material. Feature vectors based on Fourier-space grid representation
outperformed a concentric Fourier-space format.
- Abstract(参考訳): 研究者は、筆記面の物理的資料に基づいて古文書を分類するために、継続的に確証試験を行う。
しかし、これらのテストは、しばしば現場で行われ、実際に原稿オブジェクトにアクセスする必要がある。
手続きにはかなりの時間と費用がかかり、原稿にダメージを与える可能性がある。
デジタル画像のみを用いて文書を分類する手法の開発は非常に有用かつ効率的である。
そこで本研究では,有名な歴史資料集『死海巻』の画像を用いて,写本の資料を分類する新しい手法を提案する。
提案する分類器は二次元フーリエ変換を用いて原稿表面内のパターンを同定する。
変換を用いた二項分類システムと多数決プロセスを組み合わせることは, この分類作業に有効であることが示されている。
このパイロットスタディは、パーチメントまたはパピルス材料から生成される限られた量の原稿に対して、最大97%の分類成功率を示す。
フーリエ空間グリッド表現に基づく特徴ベクトルは、同心のフーリエ空間フォーマットより優れていた。
関連論文リスト
- PHD: Pixel-Based Language Modeling of Historical Documents [55.75201940642297]
実史文書に類似した合成スキャンを生成する新しい手法を提案する。
我々は,1700-1900年代における合成スキャンと実際の歴史新聞を組み合わせて,我々のモデルであるPHDを事前訓練した。
我々は、この領域におけるその有用性を強調しながら、我々のモデルを歴史的QAタスクに適用することに成功しました。
論文 参考訳(メタデータ) (2023-10-22T08:45:48Z) - Innovative Methods for Non-Destructive Inspection of Handwritten
Documents [0.0]
本稿では,画像処理と深層学習技術を用いて,本文の本質的な尺度を抽出・解析できるフレームワークを提案する。
比較対象文書の特徴ベクトル間のユークリッド距離を定量化することにより、著者を特定することができる。
実験により,異なる執筆媒体の著者を客観的に決定できる手法が得られた。
論文 参考訳(メタデータ) (2023-10-17T12:45:04Z) - DocMAE: Document Image Rectification via Self-supervised Representation
Learning [144.44748607192147]
文書画像修正のための新しい自己教師型フレームワークDocMAEを提案する。
まず、背景を除いた文書画像のランダムなパッチをマスクし、欠落したピクセルを再構成する。
このような自己教師型学習手法により、ネットワークは変形文書の本質的な構造を学習することが奨励される。
論文 参考訳(メタデータ) (2023-04-20T14:27:15Z) - The Effects of Character-Level Data Augmentation on Style-Based Dating
of Historical Manuscripts [5.285396202883411]
本稿では,古写本の年代測定におけるデータ拡張の影響について考察する。
リニアサポートベクトルマシンは、歴史的写本から抽出されたテクスチャおよびグラファイムに基づく特徴に基づいて、k倍のクロスバリデーションで訓練された。
その結果, 付加データを用いたトレーニングモデルは, 累積スコアの1%~3%の古写本の性能を向上させることがわかった。
論文 参考訳(メタデータ) (2022-12-15T15:55:44Z) - Augraphy: A Data Augmentation Library for Document Images [59.457999432618614]
Augraphyはデータ拡張パイプラインを構築するためのPythonライブラリである。
標準的なオフィス操作によって変更されたように見えるクリーンなドキュメントイメージの拡張版を作成するための戦略を提供する。
論文 参考訳(メタデータ) (2022-08-30T22:36:19Z) - Pattern Spotting and Image Retrieval in Historical Documents using Deep
Hashing [60.67014034968582]
本稿では,歴史文書のデジタルコレクションにおける画像検索とパターンスポッティングのためのディープラーニング手法を提案する。
ディープラーニングモデルは、実数値またはバイナリコード表現を提供する2つの異なるバリエーションを考慮して、特徴抽出に使用される。
また,提案手法により検索時間を最大200倍に短縮し,関連する作業と比較してストレージコストを最大6,000倍に削減する。
論文 参考訳(メタデータ) (2022-08-04T01:39:37Z) - Open Set Classification of Untranscribed Handwritten Documents [56.0167902098419]
重要な写本の膨大な量のデジタルページイメージが世界中のアーカイブに保存されている。
ドキュメントのクラスや型付け'はおそらくメタデータに含まれる最も重要なタグです。
技術的問題は文書の自動分類の1つであり、それぞれが書き起こされていない手書きのテキスト画像からなる。
論文 参考訳(メタデータ) (2022-06-20T20:43:50Z) - A Generic Image Retrieval Method for Date Estimation of Historical
Document Collections [0.4588028371034407]
本稿では,異種コレクションの前方でよく一般化する検索手法に基づく頑健な日付推定システムを提案する。
我々は、スムーズなnDCGというランキング損失関数を用いて、各問題の文書の順序を学習する畳み込みニューラルネットワークを訓練する。
論文 参考訳(メタデータ) (2022-04-08T12:30:39Z) - Handwriting Classification for the Analysis of Art-Historical Documents [6.918282834668529]
We focus on the analysis of handwriting in scanned document from the art-historic Archive of the WPI。
視覚構造に基づいて抽出されたテキストの断片をラベル付けする手書き分類モデルを提案する。
論文 参考訳(メタデータ) (2020-11-04T13:06:46Z) - Fast(er) Reconstruction of Shredded Text Documents via Self-Supervised
Deep Asymmetric Metric Learning [62.34197797857823]
細断文書の自動復元における中心的な問題は、細断文書の相互互換性評価である。
本研究は,推定回数を線形にスケールするペアワイド互換性を測るスケーラブルな深層学習手法を提案する。
提案手法は,505個のシュレッダーを持つテストインスタンスに対して,22倍の高速化を実現した最先端技術に匹敵する精度を有する。
論文 参考訳(メタデータ) (2020-03-23T03:22:06Z) - Combining Visual and Textual Features for Semantic Segmentation of
Historical Newspapers [2.5899040911480187]
本稿では,歴史新聞のセマンティックセマンティックセグメンテーションのためのマルチモーダルアプローチを提案する。
ダイアクロニックなスイスとルクセンブルクの新聞の実験に基づいて、視覚的特徴とテキスト的特徴の予測力について検討する。
その結果、強力な視覚ベースラインと比較して、マルチモーダルモデルの一貫した改善が見られた。
論文 参考訳(メタデータ) (2020-02-14T17:56:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。