論文の概要: Handwriting Classification for the Analysis of Art-Historical Documents
- arxiv url: http://arxiv.org/abs/2011.02264v1
- Date: Wed, 4 Nov 2020 13:06:46 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-29 22:23:16.113529
- Title: Handwriting Classification for the Analysis of Art-Historical Documents
- Title(参考訳): 美術史文書分析のための手書き分類
- Authors: Christian Bartz, Hendrik R\"atz, Christoph Meinel
- Abstract要約: We focus on the analysis of handwriting in scanned document from the art-historic Archive of the WPI。
視覚構造に基づいて抽出されたテキストの断片をラベル付けする手書き分類モデルを提案する。
- 参考スコア(独自算出の注目度): 6.918282834668529
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Digitized archives contain and preserve the knowledge of generations of
scholars in millions of documents. The size of these archives calls for
automatic analysis since a manual analysis by specialists is often too
expensive. In this paper, we focus on the analysis of handwriting in scanned
documents from the art-historic archive of the WPI. Since the archive consists
of documents written in several languages and lacks annotated training data for
the creation of recognition models, we propose the task of handwriting
classification as a new step for a handwriting OCR pipeline. We propose a
handwriting classification model that labels extracted text fragments, eg,
numbers, dates, or words, based on their visual structure. Such a
classification supports historians by highlighting documents that contain a
specific class of text without the need to read the entire content. To this
end, we develop and compare several deep learning-based models for text
classification. In extensive experiments, we show the advantages and
disadvantages of our proposed approach and discuss possible usage scenarios on
a real-world dataset.
- Abstract(参考訳): デジタル化されたアーカイブは、何世代もの学者の知識を何百万もの文書に格納し保存する。
これらのアーカイブのサイズは、専門家による手動分析が高価すぎるため、自動分析を要求する。
本稿では,WPIの美術史アーカイブからスキャンした文書の筆跡解析に焦点をあてる。
このアーカイブは、複数の言語で書かれた文書で構成されており、認識モデル作成のための注釈付きトレーニングデータがないため、手書きOCRパイプラインの新しいステップとして、手書き分類の課題を提案する。
本稿では,その視覚構造に基づいて,テキスト断片,例えば,数字,日付,単語をラベルで抽出した手書き分類モデルを提案する。
このような分類は、コンテンツ全体を読むことなく、特定の種類のテキストを含む文書をハイライトすることで、歴史家を支援する。
そこで本研究では,テキスト分類のための深層学習モデルを開発し,比較する。
大規模な実験では,提案手法の利点と欠点を示し,実世界のデータセット上での利用シナリオについて議論する。
関連論文リスト
- Capturing Style in Author and Document Representation [4.323709559692927]
著者と文書の埋め込みをスタイリスティックな制約で学習する新しいアーキテクチャを提案する。
本稿では,Gutenbergプロジェクトから抽出した文芸コーパス,Blog Authorship,IMDb62の3つのデータセットについて評価を行った。
論文 参考訳(メタデータ) (2024-07-18T10:01:09Z) - Leveraging Collection-Wide Similarities for Unsupervised Document Structure Extraction [61.998789448260005]
本稿では,コレクション内の文書の典型的構造を特定することを提案する。
任意のヘッダのパラフレーズを抽象化し、各トピックを各ドキュメントのロケーションにグルーピングします。
文書間の類似性を利用した教師なしグラフベース手法を開発した。
論文 参考訳(メタデータ) (2024-02-21T16:22:21Z) - A Novel Dataset for Non-Destructive Inspection of Handwritten Documents [0.0]
法医学的手書き検査は、原稿の著者を適切に定義または仮説化するために手書きの文書を調べることを目的としている。
2つのサブセットからなる新しい挑戦的データセットを提案する。第1は古典的なペンと紙で書かれた21の文書で、後者は後にデジタル化され、タブレットなどの一般的なデバイスで直接取得される。
提案したデータセットの予備的な結果は、第1サブセットで90%の分類精度が得られることを示している。
論文 参考訳(メタデータ) (2024-01-09T09:25:58Z) - Recognizing Handwriting Styles in a Historical Scanned Document Using
Unsupervised Fuzzy Clustering [0.0]
特異な手書きスタイルは、文字サイズ、ストローク幅、ループ、ダクト、スラットアングル、カーシブリグチュアなど、いくつかの要素のブレンドで異なってくることがある。
隠れマルコフモデル、サポートベクターマシン、半教師付きリカレントニューラルネットワークによるラベル付きデータの研究は、中程度から高い成功を収めている。
本研究では, ファジィソフトクラスタリングと線形主成分分析を併用して, 歴史写本の手動変化を検知することに成功した。
論文 参考訳(メタデータ) (2022-10-30T09:07:51Z) - Open Set Classification of Untranscribed Handwritten Documents [56.0167902098419]
重要な写本の膨大な量のデジタルページイメージが世界中のアーカイブに保存されている。
ドキュメントのクラスや型付け'はおそらくメタデータに含まれる最も重要なタグです。
技術的問題は文書の自動分類の1つであり、それぞれが書き起こされていない手書きのテキスト画像からなる。
論文 参考訳(メタデータ) (2022-06-20T20:43:50Z) - Robust Text Line Detection in Historical Documents: Learning and
Evaluation Methods [1.9938405188113029]
本稿では,3つの最先端システムDoc-UFCN,dhSegment,ARU-Netを用いて実験を行った。
多様な未確認ページを正確にセグメント化できる,さまざまな履歴文書データセットに基づいてトレーニングされた汎用モデルを構築することが可能であることを示す。
論文 参考訳(メタデータ) (2022-03-23T11:56:25Z) - Digital Editions as Distant Supervision for Layout Analysis of Printed
Books [76.29918490722902]
本稿では,この意味的マークアップを,レイアウト解析モデルのトレーニングと評価のための遠隔監視として利用する手法について述べる。
DTA(Deutsches Textarchiv)の50万ページにわたるモデルアーキテクチャの実験では、これらの領域レベルの評価手法と画素レベルのメトリクスとワードレベルのメトリクスとの高い相関性を見出した。
自己学習による精度向上の可能性と、DTAで訓練されたモデルが他の歴史書に一般化できる可能性について論じる。
論文 参考訳(メタデータ) (2021-12-23T16:51:53Z) - Minimally-Supervised Structure-Rich Text Categorization via Learning on
Text-Rich Networks [61.23408995934415]
テキストリッチネットワークから学習することで,最小限に教師付き分類を行う新しいフレームワークを提案する。
具体的には、テキスト理解のためのテキスト解析モジュールと、クラス差別的でスケーラブルなネットワーク学習のためのネットワーク学習モジュールの2つのモジュールを共同でトレーニングします。
実験の結果,1つのカテゴリに3つのシード文書しか与えられず,その精度は約92%であった。
論文 参考訳(メタデータ) (2021-02-23T04:14:34Z) - Multilevel Text Alignment with Cross-Document Attention [59.76351805607481]
既存のアライメントメソッドは、1つの事前定義されたレベルで動作します。
本稿では,文書を文書間注目要素で表現するための階層的アテンションエンコーダを予め確立した新しい学習手法を提案する。
論文 参考訳(メタデータ) (2020-10-03T02:52:28Z) - Learning to Select Bi-Aspect Information for Document-Scale Text Content
Manipulation [50.01708049531156]
我々は、テキストスタイルの転送とは逆の文書スケールのテキストコンテンツ操作という、新しい実践的なタスクに焦点を当てる。
詳細は、入力は構造化されたレコードと、別のレコードセットを記述するための参照テキストのセットである。
出力は、ソースレコードセットの部分的内容と参照の書き込みスタイルを正確に記述した要約である。
論文 参考訳(メタデータ) (2020-02-24T12:52:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。