Protecting Celebrities with Identity Consistency Transformer
- URL: http://arxiv.org/abs/2203.01318v2
- Date: Thu, 3 Mar 2022 18:29:50 GMT
- Title: Protecting Celebrities with Identity Consistency Transformer
- Authors: Xiaoyi Dong and Jianmin Bao and Dongdong Chen and Ting Zhang and
Weiming Zhang and Nenghai Yu and Dong Chen and Fang Wen and Baining Guo
- Abstract summary: Identity Consistency Transformer focuses on high-level semantics, specifically identity information, and detecting a suspect face by finding identity inconsistency in inner and outer face regions.
We show that Identity Consistency Transformer exhibits superior generalization ability not only across different datasets but also across various types of image degradation forms found in real-world applications including deepfake videos.
- Score: 119.67996461810304
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work we propose Identity Consistency Transformer, a novel face
forgery detection method that focuses on high-level semantics, specifically
identity information, and detecting a suspect face by finding identity
inconsistency in inner and outer face regions. The Identity Consistency
Transformer incorporates a consistency loss for identity consistency
determination. We show that Identity Consistency Transformer exhibits superior
generalization ability not only across different datasets but also across
various types of image degradation forms found in real-world applications
including deepfake videos. The Identity Consistency Transformer can be easily
enhanced with additional identity information when such information is
available, and for this reason it is especially well-suited for detecting face
forgeries involving celebrities.
Related papers
- StableIdentity: Inserting Anybody into Anywhere at First Sight [57.99693188913382]
We propose StableIdentity, which allows identity-consistent recontextualization with just one face image.
We are the first to directly inject the identity learned from a single image into video/3D generation without finetuning.
arXiv Detail & Related papers (2024-01-29T09:06:15Z) - DeepFidelity: Perceptual Forgery Fidelity Assessment for Deepfake
Detection [67.3143177137102]
Deepfake detection refers to detecting artificially generated or edited faces in images or videos.
We propose a novel Deepfake detection framework named DeepFidelity to adaptively distinguish real and fake faces.
arXiv Detail & Related papers (2023-12-07T07:19:45Z) - HFORD: High-Fidelity and Occlusion-Robust De-identification for Face
Privacy Protection [60.63915939982923]
Face de-identification is a practical way to solve the identity protection problem.
The existing facial de-identification methods have revealed several problems.
We present a High-Fidelity and Occlusion-Robust De-identification (HFORD) method to deal with these issues.
arXiv Detail & Related papers (2023-11-15T08:59:02Z) - X-ReID: Cross-Instance Transformer for Identity-Level Person
Re-Identification [53.047542904329866]
Cross Intra-Identity Instances module (IntraX) fuses different intra-identity instances to transfer Identity-Level knowledge.
Cross Inter-Identity Instances module (InterX) involves hard positive and hard negative instances to improve the attention response to the same identity.
arXiv Detail & Related papers (2023-02-04T03:16:18Z) - A Systematical Solution for Face De-identification [6.244117712209321]
In different tasks, people have various requirements for face de-identification (De-ID)
We propose a systematical solution compatible for these De-ID operations.
Our method can flexibly de-identify the face data in various ways and the processed images have high image quality.
arXiv Detail & Related papers (2021-07-19T02:02:51Z) - Semantic Consistency and Identity Mapping Multi-Component Generative
Adversarial Network for Person Re-Identification [39.605062525247135]
We propose a semantic consistency and identity mapping multi-component generative adversarial network (SC-IMGAN) which provides style adaptation from one to many domains.
Our proposed method outperforms state-of-the-art techniques on six challenging person Re-ID datasets.
arXiv Detail & Related papers (2021-04-28T14:12:29Z) - IdentityDP: Differential Private Identification Protection for Face
Images [17.33916392050051]
Face de-identification, also known as face anonymization, refers to generating another image with similar appearance and the same background, while the real identity is hidden.
We propose IdentityDP, a face anonymization framework that combines a data-driven deep neural network with a differential privacy mechanism.
Our model can effectively obfuscate the identity-related information of faces, preserve significant visual similarity, and generate high-quality images.
arXiv Detail & Related papers (2021-03-02T14:26:00Z) - VAE/WGAN-Based Image Representation Learning For Pose-Preserving
Seamless Identity Replacement In Facial Images [15.855376604558977]
We present a novel variational generative adversarial network (VGAN) based on Wasserstein loss.
We show that our network can be used to perform pose-preserving identity morphing and identity-preserving pose morphing.
arXiv Detail & Related papers (2020-03-02T03:35:59Z) - Fine-grained Image-to-Image Transformation towards Visual Recognition [102.51124181873101]
We aim at transforming an image with a fine-grained category to synthesize new images that preserve the identity of the input image.
We adopt a model based on generative adversarial networks to disentangle the identity related and unrelated factors of an image.
Experiments on the CompCars and Multi-PIE datasets demonstrate that our model preserves the identity of the generated images much better than the state-of-the-art image-to-image transformation models.
arXiv Detail & Related papers (2020-01-12T05:26:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.