On-Demand Directional Microwave Photon Emission Using Waveguide Quantum
Electrodynamics
- URL: http://arxiv.org/abs/2203.01430v2
- Date: Thu, 13 Oct 2022 20:45:26 GMT
- Title: On-Demand Directional Microwave Photon Emission Using Waveguide Quantum
Electrodynamics
- Authors: Bharath Kannan, Aziza Almanakly, Youngkyu Sung, Agustin Di Paolo,
David A. Rower, Jochen Braum\"uller, Alexander Melville, Bethany M.
Niedzielski, Amir Karamlou, Kyle Serniak, Antti Veps\"al\"ainen, Mollie E.
Schwartz, Jonilyn L. Yoder, Roni Winik, Joel I-Jan Wang, Terry P. Orlando,
Simon Gustavsson, Jeffrey A. Grover, William D. Oliver
- Abstract summary: We demonstrate high-fidelity, on-demand, directional, microwave photon emission.
We do this using an artificial molecule comprising two superconducting qubits strongly coupled to a bidirectional waveguide.
This circuit will also be capable of photon absorption, making it suitable for building interconnects within quantum networks.
- Score: 38.42250061908039
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Routing quantum information between non-local computational nodes is a
foundation for extensible networks of quantum processors. Quantum information
transfer between arbitrary nodes is generally mediated either by photons that
propagate between them, or by resonantly coupling nearby nodes. The utility is
determined by the type of emitter, propagation channel, and receiver.
Conventional approaches involving propagating microwave photons have limited
fidelity due to photon loss and are often unidirectional, whereas architectures
that use direct resonant coupling are bidirectional in principle, but can
generally accommodate only a few local nodes. Here we demonstrate
high-fidelity, on-demand, directional, microwave photon emission. We do this
using an artificial molecule comprising two superconducting qubits strongly
coupled to a bidirectional waveguide, effectively creating a chiral microwave
waveguide. Quantum interference between the photon emission pathways from the
molecule generates single photons that selectively propagate in a chosen
direction. This circuit will also be capable of photon absorption, making it
suitable for building interconnects within extensible quantum networks.
Related papers
- Efficient single-photon directional transfer between waveguides via two giant atoms [1.4778851751964937]
We investigate the single-photon transport properties in a double-waveguide quantum electrodynamic system.
Our results indicate that resonant photons can be completely transferred between the two waveguides.
This study has potential applications in quantum networks and integrated photonic circuits.
arXiv Detail & Related papers (2024-07-09T07:49:16Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - Silicon nitride waveguides with intrinsic single-photon emitters for
integrated quantum photonics [97.5153823429076]
We show the first successful coupling of photons from intrinsic single-photon emitters in SiN to monolithically integrated waveguides made of the same material.
Results pave the way toward the realization of scalable, technology-ready quantum photonic integrated circuitry.
arXiv Detail & Related papers (2022-05-17T16:51:29Z) - Engineering symmetry-selective couplings of a superconducting artificial
molecule to microwave waveguides [0.0]
We demonstrate a novel coupling scheme between an artificial molecule comprising two identical, strongly coupled transmon qubits, and two microwave waveguides.
We show that this coupling arrangement makes it possible to straightforwardly generate spatially-separated Bell states propagating across the waveguides.
We envisage further applications to quantum thermodynamics, microwave photodetection, and photon-photon gates.
arXiv Detail & Related papers (2022-02-24T17:16:11Z) - Slowing down light in a qubit metamaterial [98.00295925462214]
superconducting circuits in the microwave domain still lack such devices.
We demonstrate slowing down electromagnetic waves in a superconducting metamaterial composed of eight qubits coupled to a common waveguide.
Our findings demonstrate high flexibility of superconducting circuits to realize custom band structures.
arXiv Detail & Related papers (2022-02-14T20:55:10Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z) - Programmable directional emitter and receiver of itinerant microwave
photons in a waveguide [0.0]
The proposed device is an artificial molecule composed of two qubits coupled to a waveguide a quarter-wavelength apart.
We show that a photon is emitted directionally as a result of the destructive interference occurring either at the right or left of the qubits.
This artificial molecule possesses the capability of absorbing and transmitting an incoming photon on-demand.
arXiv Detail & Related papers (2020-04-04T12:53:08Z) - Generating Spatially Entangled Itinerant Photons with Waveguide Quantum
Electrodynamics [43.53795072498062]
In this work, we demonstrate the deterministic generation of such photons using superconducting transmon qubits that are directly coupled to a waveguide.
We generate two-photon N00N states and show that the state and spatial entanglement of the emitted photons are tunable via the qubit frequencies.
arXiv Detail & Related papers (2020-03-16T16:03:27Z) - Resonance fluorescence from waveguide-coupled strain-localized
two-dimensional quantum emitters [0.0]
We show a scalable approach using a silicon nitride photonic waveguide to strain-localize single-photon emitters from a tungsten diselenide (WSe2) monolayer and to couple them into a waveguide mode.
Our results are an important step to enable coherent control of quantum states and multiplexing of high-quality single photons in a scalable photonic quantum circuit.
arXiv Detail & Related papers (2020-02-18T15:45:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.