論文の概要: Code Synonyms Do Matter: Multiple Synonyms Matching Network for
Automatic ICD Coding
- arxiv url: http://arxiv.org/abs/2203.01515v1
- Date: Thu, 3 Mar 2022 04:57:08 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-04 15:18:37.775786
- Title: Code Synonyms Do Matter: Multiple Synonyms Matching Network for
Automatic ICD Coding
- Title(参考訳): コードシノニムは問題:自動icd符号化のための複数シノニムマッチングネットワーク
- Authors: Zheng Yuan, Chuanqi Tan, Songfang Huang
- Abstract要約: 我々は、EMRにおけるコード表現がICDにおける記述と異なるという観察に基づいて、コード同義語はより包括的な知識を提供することができると論じる。
より優れたコード表現学習のために,同義語を利用する複数の同義語マッチングネットワークを提案し,最終的にコード分類を支援する。
- 参考スコア(独自算出の注目度): 26.718721379738813
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Automatic ICD coding is defined as assigning disease codes to electronic
medical records (EMRs). Existing methods usually apply label attention with
code representations to match related text snippets. Unlike these works that
model the label with the code hierarchy or description, we argue that the code
synonyms can provide more comprehensive knowledge based on the observation that
the code expressions in EMRs vary from their descriptions in ICD. By aligning
codes to concepts in UMLS, we collect synonyms of every code. Then, we propose
a multiple synonyms matching network to leverage synonyms for better code
representation learning, and finally help the code classification. Experiments
on the MIMIC-III dataset show that our proposed method outperforms previous
state-of-the-art methods.
- Abstract(参考訳): 自動ICD符号化は、疾患コードを電子カルテ(EMR)に割り当てるものとして定義される。
既存のメソッドは通常、関連するテキストスニペットにマッチするコード表現にラベルを付ける。
コード階層や記述でラベルをモデル化するこれらの作業とは異なり、コードシノニムは、emrにおけるコード表現がicdの記述から異なるという観察に基づいて、より包括的な知識を提供できると主張している。
UMLSの概念にコードを合わせることで、すべてのコードの同義語を集めます。
そこで,コード表現学習に同義語を利用する複数の同義語マッチングネットワークを提案し,最終的にコード分類を支援する。
mimic-iiiデータセットの実験では,提案手法が先行する最先端手法よりも優れていた。
関連論文リスト
- A Novel ICD Coding Method Based on Associated and Hierarchical Code Description Distillation [6.524062529847299]
ICD符号化は、ノイズの多い医療文書入力による多ラベルテキスト分類の問題である。
近年のICD符号化の進歩により、医療用ノートやコードに付加的なデータや知識ベースを組み込むことで、性能が向上した。
コード表現学習の改善と不適切なコード代入の回避を目的とした,関連および階層型コード記述蒸留(AHDD)に基づく新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-17T07:26:23Z) - A Two-Stage Decoder for Efficient ICD Coding [10.634394331433322]
ICD符号の予測のための2段階復号機構を提案する。
まず、まず親コードを予測し、その子コードを前回の予測に基づいて予測する。
公開MIMIC-IIIデータセット実験により,本モデルが単一モデル設定で良好に動作することを示す。
論文 参考訳(メタデータ) (2023-05-27T17:25:13Z) - Exploring Structured Semantic Prior for Multi Label Recognition with
Incomplete Labels [60.675714333081466]
不完全なラベルを持つマルチラベル認識(MLR)は非常に難しい。
最近の研究は、視覚言語モデルであるCLIPにおける画像とラベルの対応を探り、不十分なアノテーションを補うことを目指している。
我々は,MLRにおけるラベル管理の欠如を,構造化されたセマンティクスを導出することにより,不完全なラベルで修復することを提唱する。
論文 参考訳(メタデータ) (2023-03-23T12:39:20Z) - HieNet: Bidirectional Hierarchy Framework for Automated ICD Coding [2.9373912230684573]
International Classification of Diseases (ICD) は、医学記録の分類コードである。
本研究では,その課題に対処する新しい双方向階層フレームワーク(HieNet)を提案する。
具体的には、コードのコリレーションをキャプチャするパーソナライズされたPageRankルーチンと、コードの階層的表現をキャプチャする双方向階層パスエンコーダと、予測のセマンティック検索空間を狭めるプログレッシブ予測手法を提案する。
論文 参考訳(メタデータ) (2022-12-09T14:51:12Z) - Soft-Labeled Contrastive Pre-training for Function-level Code
Representation [127.71430696347174]
textbfSoft-labeled contrastive pre-training framework with two positive sample construction method。
大規模コードコーパスにおけるコード間の関連性を考慮すると、ソフトラベル付きコントラスト付き事前学習は、きめ細かいソフトラベルを得ることができる。
SCodeRは、7つのデータセットで4つのコード関連タスクに対して、最先端のパフォーマンスを新たに達成する。
論文 参考訳(メタデータ) (2022-10-18T05:17:37Z) - Label Semantics for Few Shot Named Entity Recognition [68.01364012546402]
名前付きエンティティ認識におけるショットラーニングの問題について検討する。
我々は,ラベル名中の意味情報を,モデルに付加的な信号を与え,よりリッチな事前情報を与える手段として活用する。
本モデルは,第1エンコーダによって計算された名前付きエンティティの表現と,第2エンコーダによって計算されたラベル表現とを一致させることを学習する。
論文 参考訳(メタデータ) (2022-03-16T23:21:05Z) - CodeRetriever: Unimodal and Bimodal Contrastive Learning [128.06072658302165]
関数レベルのコードセマンティック表現を訓練するために,一様および二様のコントラスト学習を組み合わせたCodeRetrieverモデルを提案する。
ノンモーダルなコントラスト学習のために、文書と関数名に基づいてポジティブなコードペアを構築するためのセマンティックガイド付き手法を設計する。
バイモーダルなコントラスト学習では、コードのドキュメンテーションとインラインコメントを活用して、テキストコードペアを構築します。
論文 参考訳(メタデータ) (2022-01-26T10:54:30Z) - A Meta-embedding-based Ensemble Approach for ICD Coding Prediction [64.42386426730695]
国際疾病分類 (icd) は、世界中で臨床コーディングに使われているデファクトコードである。
これらのコードにより、医療提供者は償還を請求し、診断情報の効率的な保管と検索を容易にします。
提案手法は,日常的な医学データと科学論文の外部知識を用いて,効果的に単語ベクトルを訓練することにより,神経モデルの性能を高める。
論文 参考訳(メタデータ) (2021-02-26T17:49:58Z) - COSEA: Convolutional Code Search with Layer-wise Attention [90.35777733464354]
我々は、畳み込みニューラルネットワークを階層的注意で活用し、コード固有の構造論理をキャプチャする新しいディープラーニングアーキテクチャ、COSEAを提案する。
COSEAは、コード検索タスクの最先端メソッドよりも大幅に改善できる。
論文 参考訳(メタデータ) (2020-10-19T13:53:38Z) - Self-Supervised Contrastive Learning for Code Retrieval and
Summarization via Semantic-Preserving Transformations [28.61567319928316]
Corderは、ソースコードモデルのための自己教師付きコントラスト学習フレームワークである。
重要なイノベーションは、ソースコードモデルをトレーニングし、類似した、異種のコードスニペットを認識するように要求することです。
Corderで事前訓練されたコードモデルは、コード・ツー・コード検索、テキスト・ツー・コード検索、およびコード・ツー・テキスト要約タスクにおいて、他のベースラインを大幅に上回っていることを示す。
論文 参考訳(メタデータ) (2020-09-06T13:31:16Z) - OCoR: An Overlapping-Aware Code Retriever [15.531119719750807]
自然言語による記述が与えられた場合、コード検索は一連のコードの中で最も関連性の高いコードを探すことを目的としている。
既存の最先端アプローチでは、ニューラルネットワークをコード検索に適用している。
我々はOCoRという新しいニューラルアーキテクチャを提案し、オーバーラップを捉えるために2つの特別に設計されたコンポーネントを紹介した。
論文 参考訳(メタデータ) (2020-08-12T09:43:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。