Adaptive Path Planning for UAVs for Multi-Resolution Semantic
Segmentation
- URL: http://arxiv.org/abs/2203.01642v1
- Date: Thu, 3 Mar 2022 11:03:28 GMT
- Title: Adaptive Path Planning for UAVs for Multi-Resolution Semantic
Segmentation
- Authors: Felix Stache, Jonas Westheider, Federico Magistri, Cyrill Stachniss,
Marija Popovi\'c
- Abstract summary: A key challenge is planning missions to maximize the value of acquired data in large environments.
This is, for example, relevant for monitoring agricultural fields.
We propose an online planning algorithm which adapts the UAV paths to obtain high-resolution semantic segmentations.
- Score: 28.104584236205405
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Efficient data collection methods play a major role in helping us better
understand the Earth and its ecosystems. In many applications, the usage of
unmanned aerial vehicles (UAVs) for monitoring and remote sensing is rapidly
gaining momentum due to their high mobility, low cost, and flexible deployment.
A key challenge is planning missions to maximize the value of acquired data in
large environments given flight time limitations. This is, for example,
relevant for monitoring agricultural fields. This paper addresses the problem
of adaptive path planning for accurate semantic segmentation of using UAVs. We
propose an online planning algorithm which adapts the UAV paths to obtain
high-resolution semantic segmentations necessary in areas with fine details as
they are detected in incoming images. This enables us to perform close
inspections at low altitudes only where required, without wasting energy on
exhaustive mapping at maximum image resolution. A key feature of our approach
is a new accuracy model for deep learning-based architectures that captures the
relationship between UAV altitude and semantic segmentation accuracy. We
evaluate our approach on different domains using real-world data, proving the
efficacy and generability of our solution.
Related papers
- Multi-Agent Reinforcement Learning for Offloading Cellular Communications with Cooperating UAVs [21.195346908715972]
Unmanned aerial vehicles present an alternative means to offload data traffic from terrestrial BSs.
This paper presents a novel approach to efficiently serve multiple UAVs for data offloading from terrestrial BSs.
arXiv Detail & Related papers (2024-02-05T12:36:08Z) - Integrated Sensing, Computation, and Communication for UAV-assisted
Federated Edge Learning [52.7230652428711]
Federated edge learning (FEEL) enables privacy-preserving model training through periodic communication between edge devices and the server.
Unmanned Aerial Vehicle (UAV)mounted edge devices are particularly advantageous for FEEL due to their flexibility and mobility in efficient data collection.
arXiv Detail & Related papers (2023-06-05T16:01:33Z) - Lifelong Unsupervised Domain Adaptive Person Re-identification with
Coordinated Anti-forgetting and Adaptation [127.6168183074427]
We propose a new task, Lifelong Unsupervised Domain Adaptive (LUDA) person ReID.
This is challenging because it requires the model to continuously adapt to unlabeled data of the target environments.
We design an effective scheme for this task, dubbed CLUDA-ReID, where the anti-forgetting is harmoniously coordinated with the adaptation.
arXiv Detail & Related papers (2021-12-13T13:19:45Z) - Deep Learning Aided Packet Routing in Aeronautical Ad-Hoc Networks
Relying on Real Flight Data: From Single-Objective to Near-Pareto
Multi-Objective Optimization [79.96177511319713]
We invoke deep learning (DL) to assist routing in aeronautical ad-hoc networks (AANETs)
A deep neural network (DNN) is conceived for mapping the local geographic information observed by the forwarding node into the information required for determining the optimal next hop.
We extend the DL-aided routing algorithm to a multi-objective scenario, where we aim for simultaneously minimizing the delay, maximizing the path capacity, and maximizing the path lifetime.
arXiv Detail & Related papers (2021-10-28T14:18:22Z) - Stagewise Unsupervised Domain Adaptation with Adversarial Self-Training
for Road Segmentation of Remote Sensing Images [93.50240389540252]
Road segmentation from remote sensing images is a challenging task with wide ranges of application potentials.
We propose a novel stagewise domain adaptation model called RoadDA to address the domain shift (DS) issue in this field.
Experiment results on two benchmarks demonstrate that RoadDA can efficiently reduce the domain gap and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2021-08-28T09:29:14Z) - Adaptive Path Planning for UAV-based Multi-Resolution Semantic
Segmentation [26.729010176211016]
We propose an online planning algorithm which adapts the UAV paths to obtain high-resolution semantic segmentations.
A key feature of our approach is a new accuracy model for deep learning-based architectures.
We evaluate our approach on the application of crop/weed segmentation in precision agriculture using real-world field data.
arXiv Detail & Related papers (2021-08-04T07:30:04Z) - Trajectory Design for UAV-Based Internet-of-Things Data Collection: A
Deep Reinforcement Learning Approach [93.67588414950656]
In this paper, we investigate an unmanned aerial vehicle (UAV)-assisted Internet-of-Things (IoT) system in a 3D environment.
We present a TD3-based trajectory design for completion time minimization (TD3-TDCTM) algorithm.
Our simulation results show the superiority of the proposed TD3-TDCTM algorithm over three conventional non-learning based baseline methods.
arXiv Detail & Related papers (2021-07-23T03:33:29Z) - Multi-UAV Path Planning for Wireless Data Harvesting with Deep
Reinforcement Learning [18.266087952180733]
We propose a multi-agent reinforcement learning (MARL) approach that can adapt to profound changes in the scenario parameters defining the data harvesting mission.
We show that our proposed network architecture enables the agents to cooperate effectively by carefully dividing the data collection task among themselves.
arXiv Detail & Related papers (2020-10-23T14:59:30Z) - UAV Path Planning using Global and Local Map Information with Deep
Reinforcement Learning [16.720630804675213]
This work presents a method for autonomous UAV path planning based on deep reinforcement learning (DRL)
We compare coverage path planning ( CPP), where the UAV's goal is to survey an area of interest to data harvesting (DH), where the UAV collects data from distributed Internet of Things (IoT) sensor devices.
By exploiting structured map information of the environment, we train double deep Q-networks (DDQNs) with identical architectures on both distinctly different mission scenarios.
arXiv Detail & Related papers (2020-10-14T09:59:10Z) - UAV Path Planning for Wireless Data Harvesting: A Deep Reinforcement
Learning Approach [18.266087952180733]
We propose a new end-to-end reinforcement learning approach to UAV-enabled data collection from Internet of Things (IoT) devices.
An autonomous drone is tasked with gathering data from distributed sensor nodes subject to limited flying time and obstacle avoidance.
We show that our proposed network architecture enables the agent to make movement decisions for a variety of scenario parameters.
arXiv Detail & Related papers (2020-07-01T15:14:16Z) - Data Freshness and Energy-Efficient UAV Navigation Optimization: A Deep
Reinforcement Learning Approach [88.45509934702913]
We design a navigation policy for multiple unmanned aerial vehicles (UAVs) where mobile base stations (BSs) are deployed.
We incorporate different contextual information such as energy and age of information (AoI) constraints to ensure the data freshness at the ground BS.
By applying the proposed trained model, an effective real-time trajectory policy for the UAV-BSs captures the observable network states over time.
arXiv Detail & Related papers (2020-02-21T07:29:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.