UAV Path Planning using Global and Local Map Information with Deep
Reinforcement Learning
- URL: http://arxiv.org/abs/2010.06917v4
- Date: Thu, 21 Oct 2021 09:19:03 GMT
- Title: UAV Path Planning using Global and Local Map Information with Deep
Reinforcement Learning
- Authors: Mirco Theile, Harald Bayerlein, Richard Nai, David Gesbert, Marco
Caccamo
- Abstract summary: This work presents a method for autonomous UAV path planning based on deep reinforcement learning (DRL)
We compare coverage path planning ( CPP), where the UAV's goal is to survey an area of interest to data harvesting (DH), where the UAV collects data from distributed Internet of Things (IoT) sensor devices.
By exploiting structured map information of the environment, we train double deep Q-networks (DDQNs) with identical architectures on both distinctly different mission scenarios.
- Score: 16.720630804675213
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Path planning methods for autonomous unmanned aerial vehicles (UAVs) are
typically designed for one specific type of mission. This work presents a
method for autonomous UAV path planning based on deep reinforcement learning
(DRL) that can be applied to a wide range of mission scenarios. Specifically,
we compare coverage path planning (CPP), where the UAV's goal is to survey an
area of interest to data harvesting (DH), where the UAV collects data from
distributed Internet of Things (IoT) sensor devices. By exploiting structured
map information of the environment, we train double deep Q-networks (DDQNs)
with identical architectures on both distinctly different mission scenarios to
make movement decisions that balance the respective mission goal with
navigation constraints. By introducing a novel approach exploiting a compressed
global map of the environment combined with a cropped but uncompressed local
map showing the vicinity of the UAV agent, we demonstrate that the proposed
method can efficiently scale to large environments. We also extend previous
results for generalizing control policies that require no retraining when
scenario parameters change and offer a detailed analysis of crucial map
processing parameters' effects on path planning performance.
Related papers
- Neural Semantic Map-Learning for Autonomous Vehicles [85.8425492858912]
We present a mapping system that fuses local submaps gathered from a fleet of vehicles at a central instance to produce a coherent map of the road environment.
Our method jointly aligns and merges the noisy and incomplete local submaps using a scene-specific Neural Signed Distance Field.
We leverage memory-efficient sparse feature-grids to scale to large areas and introduce a confidence score to model uncertainty in scene reconstruction.
arXiv Detail & Related papers (2024-10-10T10:10:03Z) - Adaptive Path Planning for UAVs for Multi-Resolution Semantic
Segmentation [28.104584236205405]
A key challenge is planning missions to maximize the value of acquired data in large environments.
This is, for example, relevant for monitoring agricultural fields.
We propose an online planning algorithm which adapts the UAV paths to obtain high-resolution semantic segmentations.
arXiv Detail & Related papers (2022-03-03T11:03:28Z) - Differentiable Spatial Planning using Transformers [87.90709874369192]
We propose Spatial Planning Transformers (SPT), which given an obstacle map learns to generate actions by planning over long-range spatial dependencies.
In the setting where the ground truth map is not known to the agent, we leverage pre-trained SPTs in an end-to-end framework.
SPTs outperform prior state-of-the-art differentiable planners across all the setups for both manipulation and navigation tasks.
arXiv Detail & Related papers (2021-12-02T06:48:16Z) - Deep Learning Aided Packet Routing in Aeronautical Ad-Hoc Networks
Relying on Real Flight Data: From Single-Objective to Near-Pareto
Multi-Objective Optimization [79.96177511319713]
We invoke deep learning (DL) to assist routing in aeronautical ad-hoc networks (AANETs)
A deep neural network (DNN) is conceived for mapping the local geographic information observed by the forwarding node into the information required for determining the optimal next hop.
We extend the DL-aided routing algorithm to a multi-objective scenario, where we aim for simultaneously minimizing the delay, maximizing the path capacity, and maximizing the path lifetime.
arXiv Detail & Related papers (2021-10-28T14:18:22Z) - Large-scale Autonomous Flight with Real-time Semantic SLAM under Dense
Forest Canopy [48.51396198176273]
We propose an integrated system that can perform large-scale autonomous flights and real-time semantic mapping in challenging under-canopy environments.
We detect and model tree trunks and ground planes from LiDAR data, which are associated across scans and used to constrain robot poses as well as tree trunk models.
A drift-compensation mechanism is designed to minimize the odometry drift using semantic SLAM outputs in real time, while maintaining planner optimality and controller stability.
arXiv Detail & Related papers (2021-09-14T07:24:53Z) - Adaptive Path Planning for UAV-based Multi-Resolution Semantic
Segmentation [26.729010176211016]
We propose an online planning algorithm which adapts the UAV paths to obtain high-resolution semantic segmentations.
A key feature of our approach is a new accuracy model for deep learning-based architectures.
We evaluate our approach on the application of crop/weed segmentation in precision agriculture using real-world field data.
arXiv Detail & Related papers (2021-08-04T07:30:04Z) - Trajectory Design for UAV-Based Internet-of-Things Data Collection: A
Deep Reinforcement Learning Approach [93.67588414950656]
In this paper, we investigate an unmanned aerial vehicle (UAV)-assisted Internet-of-Things (IoT) system in a 3D environment.
We present a TD3-based trajectory design for completion time minimization (TD3-TDCTM) algorithm.
Our simulation results show the superiority of the proposed TD3-TDCTM algorithm over three conventional non-learning based baseline methods.
arXiv Detail & Related papers (2021-07-23T03:33:29Z) - A Multi-UAV System for Exploration and Target Finding in Cluttered and
GPS-Denied Environments [68.31522961125589]
We propose a framework for a team of UAVs to cooperatively explore and find a target in complex GPS-denied environments with obstacles.
The team of UAVs autonomously navigates, explores, detects, and finds the target in a cluttered environment with a known map.
Results indicate that the proposed multi-UAV system has improvements in terms of time-cost, the proportion of search area surveyed, as well as successful rates for search and rescue missions.
arXiv Detail & Related papers (2021-07-19T12:54:04Z) - Multi-UAV Path Planning for Wireless Data Harvesting with Deep
Reinforcement Learning [18.266087952180733]
We propose a multi-agent reinforcement learning (MARL) approach that can adapt to profound changes in the scenario parameters defining the data harvesting mission.
We show that our proposed network architecture enables the agents to cooperate effectively by carefully dividing the data collection task among themselves.
arXiv Detail & Related papers (2020-10-23T14:59:30Z) - UAV Path Planning for Wireless Data Harvesting: A Deep Reinforcement
Learning Approach [18.266087952180733]
We propose a new end-to-end reinforcement learning approach to UAV-enabled data collection from Internet of Things (IoT) devices.
An autonomous drone is tasked with gathering data from distributed sensor nodes subject to limited flying time and obstacle avoidance.
We show that our proposed network architecture enables the agent to make movement decisions for a variety of scenario parameters.
arXiv Detail & Related papers (2020-07-01T15:14:16Z) - Reinforcement Learning for UAV Autonomous Navigation, Mapping and Target
Detection [36.79380276028116]
We study a joint detection, mapping and navigation problem for a single unmanned aerial vehicle (UAV) equipped with a low complexity radar and flying in an unknown environment.
The goal is to optimize its trajectory with the purpose of maximizing the mapping accuracy and to avoid areas where measurements might not be sufficiently informative from the perspective of a target detection.
arXiv Detail & Related papers (2020-05-05T20:39:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.