論文の概要: On Practical Reinforcement Learning: Provable Robustness, Scalability,
and Statistical Efficiency
- arxiv url: http://arxiv.org/abs/2203.01758v1
- Date: Thu, 3 Mar 2022 15:10:55 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-04 14:37:40.924361
- Title: On Practical Reinforcement Learning: Provable Robustness, Scalability,
and Statistical Efficiency
- Title(参考訳): 実践的強化学習について:確率的ロバスト性、スケーラビリティ、統計的効率性
- Authors: Thanh Nguyen-Tang
- Abstract要約: この論文は、現代の実践的考察において、基礎強化学習(RL)法を厳格に研究している。
それぞれの設定において、論文は研究すべき問題を動機付け、現在の文献をレビューし、証明可能な効率保証を備えた計算効率の良いアルゴリズムを提供する。
- 参考スコア(独自算出の注目度): 2.28438857884398
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This thesis rigorously studies fundamental reinforcement learning (RL)
methods in modern practical considerations, including robust RL, distributional
RL, and offline RL with neural function approximation. The thesis first
prepares the readers with an overall overview of RL and key technical
background in statistics and optimization. In each of the settings, the thesis
motivates the problems to be studied, reviews the current literature, provides
computationally efficient algorithms with provable efficiency guarantees, and
concludes with future research directions. The thesis makes fundamental
contributions to the three settings above, both algorithmically, theoretically,
and empirically, while staying relevant to practical considerations.
- Abstract(参考訳): この論文は、ロバストRL、分布RL、および神経機能近似を用いたオフラインRLを含む、現代の実践的考察において、基礎強化学習法を厳格に研究している。
論文はまず、rlの概要と統計と最適化における重要な技術的背景を読者に提供する。
それぞれの設定において、論文は研究すべき問題を動機付け、現在の文献をレビューし、証明可能な効率保証を備えた計算効率の良いアルゴリズムを提供し、将来の研究方向で結論付ける。
この論文は、アルゴリズム的、理論的、経験的に、上の3つの設定に基本的な貢献をし、実践的な考察に関係している。
関連論文リスト
- Heuristic Algorithm-based Action Masking Reinforcement Learning (HAAM-RL) with Ensemble Inference Method [0.0]
本稿では,HAAMRL(Huristic ensemble-based Action Masking Reinforcement Learning)と呼ばれる新しい強化学習手法を提案する。
提案手法は, 複雑な製造プロセスの最適化において, 優れた性能と性能の一般化を示す。
論文 参考訳(メタデータ) (2024-03-21T03:42:39Z) - Iterative Preference Learning from Human Feedback: Bridging Theory and Practice for RLHF under KL-Constraint [56.74058752955209]
本稿では,RLHFによる強化学習を用いた生成モデルのアライメント過程について検討する。
まず、オフラインPPOやオフラインDPOのような既存の一般的な手法の主な課題を、環境の戦略的探索に欠如していると認識する。
有限サンプル理論保証を用いた効率的なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-12-18T18:58:42Z) - Reinforcement Learning-assisted Evolutionary Algorithm: A Survey and
Research Opportunities [63.258517066104446]
進化的アルゴリズムの構成要素として統合された強化学習は,近年,優れた性能を示している。
本稿では,RL-EA 統合手法,RL-EA が採用する RL-EA 支援戦略,および既存文献による適用について論じる。
RL-EAセクションの適用例では、RL-EAのいくつかのベンチマークおよび様々な公開データセットにおける優れた性能を示す。
論文 参考訳(メタデータ) (2023-08-25T15:06:05Z) - Provable Reward-Agnostic Preference-Based Reinforcement Learning [61.39541986848391]
PbRL(Preference-based Reinforcement Learning)は、RLエージェントが、軌道上のペアワイドな嗜好に基づくフィードバックを用いてタスクを最適化することを学ぶパラダイムである。
本稿では,隠れた報酬関数の正確な学習を可能にする探索軌道を求める理論的報酬非依存PbRLフレームワークを提案する。
論文 参考訳(メタデータ) (2023-05-29T15:00:09Z) - Optimal Goal-Reaching Reinforcement Learning via Quasimetric Learning [73.80728148866906]
準メトリック強化学習(QRL)は、準メトリックモデルを用いて最適な値関数を学習する新しいRL法である。
オフラインおよびオンラインの目標達成ベンチマークでは、QRLはサンプル効率とパフォーマンスが改善されている。
論文 参考訳(メタデータ) (2023-04-03T17:59:58Z) - Understanding Reinforcement Learning Algorithms: The Progress from Basic
Q-learning to Proximal Policy Optimization [0.6091702876917281]
強化学習(RL)にはユニークな設定、用語、数学があり、新しい分野や人工知能を脅かすことができる。
本稿では、RLの基本原理を明確かつ簡潔に概説し、RLアルゴリズムの異なるタイプについて述べる。
論文の提示は、1980年代初頭のQ-ラーニングアルゴリズムから、TD3、PPO、オフラインRLといった最先端のアルゴリズムまで、この分野の歴史的進歩と一致している。
論文 参考訳(メタデータ) (2023-03-31T17:24:51Z) - False Correlation Reduction for Offline Reinforcement Learning [115.11954432080749]
本稿では,実効的かつ理論的に証明可能なアルゴリズムであるオフラインRLに対するfalSe Correlation Reduction (SCORE)を提案する。
SCOREは、標準ベンチマーク(D4RL)において、様々なタスクにおいて3.1倍の高速化でSoTA性能を達成することを実証的に示す。
論文 参考訳(メタデータ) (2021-10-24T15:34:03Z) - Heuristic-Guided Reinforcement Learning [31.056460162389783]
Tabula rasa RLアルゴリズムは、意思決定タスクの地平線に合わせてスケールする環境相互作用や計算を必要とする。
我々のフレームワークは、有限の相互作用予算の下でRLのバイアスと分散を制御するための地平線に基づく正規化と見なすことができる。
特に,従来の知識を超越してRLエージェントを外挿できる「改良可能な」新しい概念を導入する。
論文 参考訳(メタデータ) (2021-06-05T00:04:09Z) - Improved Context-Based Offline Meta-RL with Attention and Contrastive
Learning [1.3106063755117399]
SOTA OMRLアルゴリズムの1つであるFOCALを、タスク内注意メカニズムとタスク間コントラスト学習目標を組み込むことで改善します。
理論解析と実験を行い、エンドツーエンドおよびモデルフリーの優れた性能、効率、堅牢性を実証します。
論文 参考訳(メタデータ) (2021-02-22T05:05:16Z) - Towards Continual Reinforcement Learning: A Review and Perspectives [69.48324517535549]
我々は,連続的強化学習(RL)に対する異なる定式化とアプローチの文献レビューの提供を目的とする。
まだ初期段階だが、継続的なrlの研究は、よりインクリメンタルな強化学習者を開発することを約束している。
これには、医療、教育、物流、ロボット工学などの分野の応用が含まれる。
論文 参考訳(メタデータ) (2020-12-25T02:35:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。