論文の概要: Intention Aware Robot Crowd Navigation with Attention-Based Interaction
Graph
- arxiv url: http://arxiv.org/abs/2203.01821v4
- Date: Mon, 24 Apr 2023 20:40:16 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-27 00:21:09.101281
- Title: Intention Aware Robot Crowd Navigation with Attention-Based Interaction
Graph
- Title(参考訳): 意識に基づくインタラクショングラフを用いた意識認識ロボットの群集ナビゲーション
- Authors: Shuijing Liu, Peixin Chang, Zhe Huang, Neeloy Chakraborty, Kaiwen
Hong, Weihang Liang, D. Livingston McPherson, Junyi Geng, and Katherine
Driggs-Campbell
- Abstract要約: 本研究では,高密度で対話的な群集における安全かつ意図に配慮したロボットナビゲーションの課題について検討する。
本稿では,エージェント間の異種相互作用を捕捉するアテンション機構を備えた新しいグラフニューラルネットワークを提案する。
提案手法は,群集ナビゲーションのシナリオにおいて,優れたナビゲーション性能と非侵襲性をロボットが実現できることを実証する。
- 参考スコア(独自算出の注目度): 3.8461692052415137
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the problem of safe and intention-aware robot navigation in dense
and interactive crowds. Most previous reinforcement learning (RL) based methods
fail to consider different types of interactions among all agents or ignore the
intentions of people, which results in performance degradation. To learn a safe
and efficient robot policy, we propose a novel recurrent graph neural network
with attention mechanisms to capture heterogeneous interactions among agents
through space and time. To encourage longsighted robot behaviors, we infer the
intentions of dynamic agents by predicting their future trajectories for
several timesteps. The predictions are incorporated into a model-free RL
framework to prevent the robot from intruding into the intended paths of other
agents. We demonstrate that our method enables the robot to achieve good
navigation performance and non-invasiveness in challenging crowd navigation
scenarios. We successfully transfer the policy learned in simulation to a
real-world TurtleBot 2i. Our code and videos are available at
https://sites.google.com/view/intention-aware-crowdnav/home.
- Abstract(参考訳): 本研究では,高密度で対話的な群集における安全かつ意図的なロボットナビゲーションの問題について検討する。
従来の強化学習(RL)に基づくほとんどの手法は、すべてのエージェント間の異なるタイプの相互作用を考慮できなかったり、人々の意図を無視したりせず、結果としてパフォーマンスが低下する。
安全かつ効率的なロボットポリシーを学習するために、空間と時間を通してエージェント間の異種相互作用を捕捉する注意機構を備えた新しいグラフニューラルネットワークを提案する。
ロボットの行動の長期化を促すために, ロボットの動作を予測し, 動的エージェントの意図を推算する。
予測はモデルフリーのrlフレームワークに組み込まれ、ロボットが他のエージェントの意図した経路に侵入することを防ぐ。
本手法は,群集ナビゲーションのシナリオにおいて,ロボットが優れたナビゲーション性能と非侵襲性を達成できることを実証する。
シミュレーションで学んだ方針を実世界のタートルボット2iに移すことに成功した。
私たちのコードとビデオはhttps://sites.google.com/view/intention-aware-crowdnav/homeで閲覧できます。
関連論文リスト
- HEIGHT: Heterogeneous Interaction Graph Transformer for Robot Navigation in Crowded and Constrained Environments [8.974071308749007]
廊下や家具などの環境制約のある密集した対話型群集におけるロボットナビゲーションの問題点について検討する。
従来の手法ではエージェントと障害物間のあらゆる種類の相互作用を考慮できないため、安全で非効率なロボット経路につながる。
本稿では,ロボットナビゲーションポリシーを強化学習で学習するための構造化フレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-19T00:56:35Z) - Robot Navigation with Entity-Based Collision Avoidance using Deep Reinforcement Learning [0.0]
本稿では,ロボットのさまざまなエージェントや障害物との相互作用を高める新しい手法を提案する。
このアプローチでは、エンティティタイプに関する情報を使用し、衝突回避を改善し、より安全なナビゲーションを保証する。
本研究では,大人,自転車乗り,子供,静的障害物など,さまざまな物体との衝突に対してロボットをペナルティ化する新たな報酬関数を提案する。
論文 参考訳(メタデータ) (2024-08-26T11:16:03Z) - What Matters to You? Towards Visual Representation Alignment for Robot
Learning [81.30964736676103]
人のために運用する場合、ロボットはエンドユーザーの好みに合わせて報酬を最適化する必要がある。
本稿では、視覚的表現アライメント問題を解決するためのRAPL(Representation-Aligned Preference-based Learning)を提案する。
論文 参考訳(メタデータ) (2023-10-11T23:04:07Z) - Learning Vision-based Pursuit-Evasion Robot Policies [54.52536214251999]
我々は、部分的に観察可能なロボットの監督を生成する完全観測可能なロボットポリシーを開発する。
我々は、RGB-Dカメラを搭載した4足歩行ロボットに、野生での追従回避のインタラクションにポリシーを展開させる。
論文 参考訳(メタデータ) (2023-08-30T17:59:05Z) - SACSoN: Scalable Autonomous Control for Social Navigation [62.59274275261392]
我々は、社会的に邪魔にならないナビゲーションのための政策の訓練方法を開発した。
この反事実的摂動を最小化することにより、共有空間における人間の自然な振る舞いを変えない方法でロボットに行動を促すことができる。
屋内移動ロボットが人間の傍観者と対話する大規模なデータセットを収集する。
論文 参考訳(メタデータ) (2023-06-02T19:07:52Z) - Affordances from Human Videos as a Versatile Representation for Robotics [31.248842798600606]
我々は、人間がどこでどのように対話するかを推定する視覚的余裕モデルを訓練する。
これらの行動割当の構造は、ロボットが多くの複雑なタスクを直接実行できるようにする。
私たちは、VRBと呼ばれる4つの現実世界環境、10以上のタスクと2つのロボットプラットフォームにおいて、私たちのアプローチの有効性を示します。
論文 参考訳(メタデータ) (2023-04-17T17:59:34Z) - Self-Improving Robots: End-to-End Autonomous Visuomotor Reinforcement
Learning [54.636562516974884]
模倣と強化学習において、人間の監督コストは、ロボットが訓練できるデータの量を制限する。
本研究では,自己改善型ロボットシステムのための新しい設計手法であるMEDAL++を提案する。
ロボットは、タスクの実施と解除の両方を学ぶことで、自律的にタスクを練習し、同時にデモンストレーションから報酬関数を推論する。
論文 参考訳(メタデータ) (2023-03-02T18:51:38Z) - Gesture2Path: Imitation Learning for Gesture-aware Navigation [54.570943577423094]
Gesture2Pathは、画像に基づく模倣学習とモデル予測制御を組み合わせた新しいソーシャルナビゲーション手法である。
実際のロボットに本手法をデプロイし,4つのジェスチャーナビゲーションシナリオに対するアプローチの有効性を示す。
論文 参考訳(メタデータ) (2022-09-19T23:05:36Z) - Multi-subgoal Robot Navigation in Crowds with History Information and
Interactions [0.0]
深部強化学習に基づくマルチサブゴアルロボットナビゲーション手法を提案する。
作業中に履歴情報やインタラクションを導入することで,ロボットの次のポジションポイントを計画する。
実験により,本手法は成功率と衝突速度の両方の観点から,最先端の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2022-05-04T11:24:49Z) - REvolveR: Continuous Evolutionary Models for Robot-to-robot Policy
Transfer [57.045140028275036]
本研究では,運動学や形態学など,異なるパラメータを持つ2つの異なるロボット間でポリシーを伝達する問題を考察する。
模倣学習手法を含む動作や状態遷移の分布を一致させることで、新しいポリシーを訓練する既存のアプローチは、最適な動作や/または状態分布が異なるロボットでミスマッチしているために失敗する。
本稿では,物理シミュレータに実装されたロボット政策伝達に連続的進化モデルを用いることで,$RevolveR$という新しい手法を提案する。
論文 参考訳(メタデータ) (2022-02-10T18:50:25Z) - Decentralized Structural-RNN for Robot Crowd Navigation with Deep
Reinforcement Learning [4.724825031148412]
本研究では, 群集ナビゲーションにおけるロボット決定のための空間的・時間的関係を考慮に入れた構造的リカレントニューラルネットワーク(DS-RNN)を提案する。
我々のモデルは、群衆ナビゲーションのシナリオに挑戦する上で、過去の手法よりも優れていることを実証する。
シミュレータで学んだポリシーを現実世界のTurtleBot 2iに転送することに成功した。
論文 参考訳(メタデータ) (2020-11-09T23:15:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。