論文の概要: HEIGHT: Heterogeneous Interaction Graph Transformer for Robot Navigation in Crowded and Constrained Environments
- arxiv url: http://arxiv.org/abs/2411.12150v1
- Date: Tue, 19 Nov 2024 00:56:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-20 13:37:24.479913
- Title: HEIGHT: Heterogeneous Interaction Graph Transformer for Robot Navigation in Crowded and Constrained Environments
- Title(参考訳): 人混み・拘束環境におけるロボットナビゲーションのための異種相互作用グラフ変換器
- Authors: Shuijing Liu, Haochen Xia, Fatemeh Cheraghi Pouria, Kaiwen Hong, Neeloy Chakraborty, Katherine Driggs-Campbell,
- Abstract要約: 廊下や家具などの環境制約のある密集した対話型群集におけるロボットナビゲーションの問題点について検討する。
従来の手法ではエージェントと障害物間のあらゆる種類の相互作用を考慮できないため、安全で非効率なロボット経路につながる。
本稿では,ロボットナビゲーションポリシーを強化学習で学習するための構造化フレームワークを提案する。
- 参考スコア(独自算出の注目度): 8.974071308749007
- License:
- Abstract: We study the problem of robot navigation in dense and interactive crowds with environmental constraints such as corridors and furniture. Previous methods fail to consider all types of interactions among agents and obstacles, leading to unsafe and inefficient robot paths. In this article, we leverage a graph-based representation of crowded and constrained scenarios and propose a structured framework to learn robot navigation policies with deep reinforcement learning. We first split the representations of different components in the environment and propose a heterogeneous spatio-temporal (st) graph to model distinct interactions among humans, robots, and obstacles. Based on the heterogeneous st-graph, we propose HEIGHT, a novel navigation policy network architecture with different components to capture heterogeneous interactions among entities through space and time. HEIGHT utilizes attention mechanisms to prioritize important interactions and a recurrent network to track changes in the dynamic scene over time, encouraging the robot to avoid collisions adaptively. Through extensive simulation and real-world experiments, we demonstrate that HEIGHT outperforms state-of-the-art baselines in terms of success and efficiency in challenging navigation scenarios. Furthermore, we demonstrate that our pipeline achieves better zero-shot generalization capability than previous works when the densities of humans and obstacles change. More videos are available at https://sites.google.com/view/crowdnav-height/home.
- Abstract(参考訳): 廊下や家具などの環境制約のある密集した対話型群集におけるロボットナビゲーションの問題点について検討する。
従来の手法ではエージェントと障害物間のあらゆる種類の相互作用を考慮できないため、安全で非効率なロボット経路に繋がる。
本稿では,混雑・制約のあるシナリオをグラフベースで表現し,ロボットナビゲーションポリシーを深層強化学習で学習するための構造化フレームワークを提案する。
まず,環境における異なるコンポーネントの表現を分割し,人間,ロボット,障害物間の異なる相互作用をモデル化するための異種時空間グラフを提案する。
異種stグラフに基づいて,異種間相互作用を空間と時間で捉えるため,異なるコンポーネントを持つ新しいナビゲーションポリシーネットワークアーキテクチャであるHEIGHTを提案する。
HEIGHTは注意機構を利用して重要なインタラクションを優先順位付けし、リカレントネットワークを使用して動的シーンの変化を時間とともに追跡し、ロボットが衝突を適応的に避けるよう促す。
大規模なシミュレーションと実世界の実験を通じて、HEIGHTは挑戦的なナビゲーションシナリオにおける成功と効率の観点から最先端のベースラインを上回っていることを実証する。
さらに,人間や障害物の密度が変化すると,従来の作業よりもゼロショットの一般化能力が向上することが実証された。
さらなるビデオはhttps://sites.google.com/view/crowdnav-height/home.comで公開されている。
関連論文リスト
- Robot Navigation with Entity-Based Collision Avoidance using Deep Reinforcement Learning [0.0]
本稿では,ロボットのさまざまなエージェントや障害物との相互作用を高める新しい手法を提案する。
このアプローチでは、エンティティタイプに関する情報を使用し、衝突回避を改善し、より安全なナビゲーションを保証する。
本研究では,大人,自転車乗り,子供,静的障害物など,さまざまな物体との衝突に対してロボットをペナルティ化する新たな報酬関数を提案する。
論文 参考訳(メタデータ) (2024-08-26T11:16:03Z) - Commonsense Reasoning for Legged Robot Adaptation with Vision-Language Models [81.55156507635286]
脚のついたロボットは、様々な環境をナビゲートし、幅広い障害を克服することができる。
現在の学習手法は、人間の監督を伴わずに、予期せぬ状況の長い尾への一般化に苦慮することが多い。
本稿では,VLM-Predictive Control (VLM-PC) というシステムを提案する。
論文 参考訳(メタデータ) (2024-07-02T21:00:30Z) - Learning Manipulation by Predicting Interaction [85.57297574510507]
本稿では,インタラクションを予測して操作を学習する一般的な事前学習パイプラインを提案する。
実験の結果,MPIは従来のロボットプラットフォームと比較して10%から64%向上していることがわかった。
論文 参考訳(メタデータ) (2024-06-01T13:28:31Z) - Robot Interaction Behavior Generation based on Social Motion Forecasting for Human-Robot Interaction [9.806227900768926]
本稿では,共有ロボット表現空間における社会的動き予測のモデル化を提案する。
ECHOは上記の共有空間で活動し、社会的シナリオで遭遇したエージェントの将来の動きを予測する。
我々は,多対人動作予測タスクにおけるモデルの評価を行い,最先端の性能を大きなマージンで獲得する。
論文 参考訳(メタデータ) (2024-02-07T11:37:14Z) - Multi-Agent Dynamic Relational Reasoning for Social Robot Navigation [50.01551945190676]
社会ロボットナビゲーションは、日常生活の様々な状況において有用であるが、安全な人間とロボットの相互作用と効率的な軌道計画が必要である。
本稿では, 動的に進化する関係構造を明示的に推論した系統的関係推論手法を提案する。
マルチエージェント軌道予測とソーシャルロボットナビゲーションの有効性を実証する。
論文 参考訳(メタデータ) (2024-01-22T18:58:22Z) - COPILOT: Human-Environment Collision Prediction and Localization from
Egocentric Videos [62.34712951567793]
エゴセントリックな観測から人間と環境の衝突を予測する能力は、VR、AR、ウェアラブルアシストロボットなどのアプリケーションにおける衝突回避を可能にするために不可欠である。
本稿では、ボディマウントカメラから撮影した多視点エゴセントリックビデオから、多様な環境における衝突を予測するという課題を紹介する。
衝突予測と局所化を同時に行うために,COPILOTと呼ばれるトランスフォーマーモデルを提案する。
論文 参考訳(メタデータ) (2022-10-04T17:49:23Z) - Multi-subgoal Robot Navigation in Crowds with History Information and
Interactions [0.0]
深部強化学習に基づくマルチサブゴアルロボットナビゲーション手法を提案する。
作業中に履歴情報やインタラクションを導入することで,ロボットの次のポジションポイントを計画する。
実験により,本手法は成功率と衝突速度の両方の観点から,最先端の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2022-05-04T11:24:49Z) - Socially Compliant Navigation Dataset (SCAND): A Large-Scale Dataset of
Demonstrations for Social Navigation [92.66286342108934]
社会ナビゲーションは、ロボットのような自律的なエージェントが、人間のような他の知的エージェントの存在下で、社会的に従順な方法でナビゲートする能力である。
私たちのデータセットには8.7時間、128の軌道、25マイルの社会的に適合した人間の遠隔運転デモが含まれています。
論文 参考訳(メタデータ) (2022-03-28T19:09:11Z) - Regularized Deep Signed Distance Fields for Reactive Motion Generation [30.792481441975585]
距離に基づく制約は、ロボットが自分の行動を計画し、安全に行動できるようにするための基本となる。
本研究では,任意のスケールでスムーズな距離場を計算できる単一暗黙関数ReDSDFを提案する。
共有作業空間における全身制御(WBC)と安全なヒューマンロボットインタラクション(HRI)のための代表的タスクにおけるアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2022-03-09T14:21:32Z) - Intention Aware Robot Crowd Navigation with Attention-Based Interaction
Graph [3.8461692052415137]
本研究では,高密度で対話的な群集における安全かつ意図に配慮したロボットナビゲーションの課題について検討する。
本稿では,エージェント間の異種相互作用を捕捉するアテンション機構を備えた新しいグラフニューラルネットワークを提案する。
提案手法は,群集ナビゲーションのシナリオにおいて,優れたナビゲーション性能と非侵襲性をロボットが実現できることを実証する。
論文 参考訳(メタデータ) (2022-03-03T16:26:36Z) - End-to-end Contextual Perception and Prediction with Interaction
Transformer [79.14001602890417]
我々は3次元物体の検出と将来の動きを自動運転の文脈で予測する問題に取り組む。
空間的・時間的依存関係を捉えるために,新しいトランスフォーマーアーキテクチャを用いたリカレントニューラルネットワークを提案する。
私たちのモデルはエンドツーエンドでトレーニングでき、リアルタイムで実行されます。
論文 参考訳(メタデータ) (2020-08-13T14:30:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。