A multi-stream convolutional neural network for classification of
progressive MCI in Alzheimer's disease using structural MRI images
- URL: http://arxiv.org/abs/2203.01944v1
- Date: Thu, 3 Mar 2022 15:14:13 GMT
- Title: A multi-stream convolutional neural network for classification of
progressive MCI in Alzheimer's disease using structural MRI images
- Authors: Mona Ashtari-Majlan and Abbas Seifi and Mohammad Mahdi Dehshibi
- Abstract summary: We propose a multi-stream deep convolutional neural network fed with patch-based imaging data to classify stable MCI and progressive MCI.
First, we compare MRI images of Alzheimer's disease with cognitively normal subjects to identify distinct anatomical landmarks.
These landmarks are then used to extract patches that are fed into the proposed multi-stream convolutional neural network to classify MRI images.
- Score: 0.23633885460047763
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Early diagnosis of Alzheimer's disease and its prodromal stage, also known as
mild cognitive impairment (MCI), is critical since some patients with
progressive MCI will develop the disease. We propose a multi-stream deep
convolutional neural network fed with patch-based imaging data to classify
stable MCI and progressive MCI. First, we compare MRI images of Alzheimer's
disease with cognitively normal subjects to identify distinct anatomical
landmarks using a multivariate statistical test. These landmarks are then used
to extract patches that are fed into the proposed multi-stream convolutional
neural network to classify MRI images. Next, we train the architecture in a
separate scenario using samples from Alzheimer's disease images, which are
anatomically similar to the progressive MCI ones and cognitively normal images
to compensate for the lack of progressive MCI training data. Finally, we
transfer the trained model weights to the proposed architecture in order to
fine-tune the model using progressive MCI and stable MCI data. Experimental
results on the ADNI-1 dataset indicate that our method outperforms existing
methods for MCI classification, with an F1-score of 85.96%.
Related papers
- Early diagnosis of Alzheimer's disease from MRI images with deep learning model [0.7673339435080445]
Alzheimer's disease is the most common cause of dementia worldwide.
classification of dementia involves approaches such as medical history review, neuropsychological tests, and magnetic resonance imaging (MRI)
In this article, a pre-trained convolutional neural network has been applied to the DEMNET dementia network to extract key features from AD images.
arXiv Detail & Related papers (2024-09-27T15:07:26Z) - GFE-Mamba: Mamba-based AD Multi-modal Progression Assessment via Generative Feature Extraction from MCI [5.355943545567233]
Alzheimer's Disease (AD) is an irreversible neurodegenerative disorder that often progresses from Mild Cognitive Impairment (MCI)
We introduce GFE-Mamba, a classifier based on Generative Feature Extraction (GFE)
It integrates data from assessment scales, MRI, and PET, enabling deeper multimodal fusion.
Our experimental results demonstrate that the GFE-Mamba model is effective in predicting the conversion from MCI to AD.
arXiv Detail & Related papers (2024-07-22T15:22:33Z) - MindFormer: Semantic Alignment of Multi-Subject fMRI for Brain Decoding [50.55024115943266]
We introduce a novel semantic alignment method of multi-subject fMRI signals using so-called MindFormer.
This model is specifically designed to generate fMRI-conditioned feature vectors that can be used for conditioning Stable Diffusion model for fMRI- to-image generation or large language model (LLM) for fMRI-to-text generation.
Our experimental results demonstrate that MindFormer generates semantically consistent images and text across different subjects.
arXiv Detail & Related papers (2024-05-28T00:36:25Z) - NeuroPictor: Refining fMRI-to-Image Reconstruction via Multi-individual Pretraining and Multi-level Modulation [55.51412454263856]
This paper proposes to directly modulate the generation process of diffusion models using fMRI signals.
By training with about 67,000 fMRI-image pairs from various individuals, our model enjoys superior fMRI-to-image decoding capacity.
arXiv Detail & Related papers (2024-03-27T02:42:52Z) - Transfer Learning and Class Decomposition for Detecting the Cognitive
Decline of Alzheimer Disease [0.0]
This paper proposes a transfer learning method using class decomposition to detect Alzheimer's disease from sMRI images.
The proposed model achieved state-of-the-art performance in the Alzheimer's disease (AD) vs mild cognitive impairment (MCI) vs cognitively normal (CN) classification task with a 3% increase in accuracy from what is reported in the literature.
arXiv Detail & Related papers (2023-01-31T09:44:52Z) - CNN-LSTM Based Multimodal MRI and Clinical Data Fusion for Predicting
Functional Outcome in Stroke Patients [1.5250925845050138]
Clinical outcome prediction plays an important role in stroke patient management.
From a machine learning point-of-view, one of the main challenges is dealing with heterogeneous data.
In this paper a multimodal convolutional neural network - long short-term memory (CNN-LSTM) based ensemble model is proposed.
arXiv Detail & Related papers (2022-05-11T14:46:01Z) - Interpretability Aware Model Training to Improve Robustness against
Out-of-Distribution Magnetic Resonance Images in Alzheimer's Disease
Classification [8.050897403457995]
We propose an interpretability aware adversarial training regime to improve robustness against out-of-distribution samples originating from different MRI hardware.
We present preliminary results showing promising performance on out-of-distribution samples.
arXiv Detail & Related papers (2021-11-15T04:42:47Z) - Multi-institutional Collaborations for Improving Deep Learning-based
Magnetic Resonance Image Reconstruction Using Federated Learning [62.17532253489087]
Deep learning methods have been shown to produce superior performance on MR image reconstruction.
These methods require large amounts of data which is difficult to collect and share due to the high cost of acquisition and medical data privacy regulations.
We propose a federated learning (FL) based solution in which we take advantage of the MR data available at different institutions while preserving patients' privacy.
arXiv Detail & Related papers (2021-03-03T03:04:40Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z) - A Graph Gaussian Embedding Method for Predicting Alzheimer's Disease
Progression with MEG Brain Networks [59.15734147867412]
Characterizing the subtle changes of functional brain networks associated with Alzheimer's disease (AD) is important for early diagnosis and prediction of disease progression.
We developed a new deep learning method, termed multiple graph Gaussian embedding model (MG2G)
We used MG2G to detect the intrinsic latent dimensionality of MEG brain networks, predict the progression of patients with mild cognitive impairment (MCI) to AD, and identify brain regions with network alterations related to MCI.
arXiv Detail & Related papers (2020-05-08T02:29:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.