Multi-objective robust optimization using adaptive surrogate models for
problems with mixed continuous-categorical parameters
- URL: http://arxiv.org/abs/2203.01996v1
- Date: Thu, 3 Mar 2022 20:23:18 GMT
- Title: Multi-objective robust optimization using adaptive surrogate models for
problems with mixed continuous-categorical parameters
- Authors: M. Moustapha, A. Galimshina, G. Habert, B. Sudret
- Abstract summary: Robust design optimization is traditionally considered when uncertainties are mainly affecting the objective function.
The resulting nested optimization problem may be solved using a general-purpose solver, herein the non-dominated sorting genetic algorithm (NSGA-II)
The proposed approach consists of sequentially carrying out NSGA-II while using an adaptively built Kriging model to estimate the quantiles.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Explicitly accounting for uncertainties is paramount to the safety of
engineering structures. Optimization which is often carried out at the early
stage of the structural design offers an ideal framework for this task. When
the uncertainties are mainly affecting the objective function, robust design
optimization is traditionally considered. This work further assumes the
existence of multiple and competing objective functions that need to be dealt
with simultaneously. The optimization problem is formulated by considering
quantiles of the objective functions which allows for the combination of both
optimality and robustness in a single metric. By introducing the concept of
common random numbers, the resulting nested optimization problem may be solved
using a general-purpose solver, herein the non-dominated sorting genetic
algorithm (NSGA-II). The computational cost of such an approach is however a
serious hurdle to its application in real-world problems. We therefore propose
a surrogate-assisted approach using Kriging as an inexpensive approximation of
the associated computational model. The proposed approach consists of
sequentially carrying out NSGA-II while using an adaptively built Kriging model
to estimate of the quantiles. Finally, the methodology is adapted to account
for mixed categorical-continuous parameters as the applications involve the
selection of qualitative design parameters as well. The methodology is first
applied to two analytical examples showing its efficiency. The third
application relates to the selection of optimal renovation scenarios of a
building considering both its life cycle cost and environmental impact. It
shows that when it comes to renovation, the heating system replacement should
be the priority.
Related papers
- End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
The Predict-Then-Forecast (PtO) paradigm in machine learning aims to maximize downstream decision quality.
This paper extends the PtO methodology to optimization problems with nondifferentiable Ordered Weighted Averaging (OWA) objectives.
It shows how optimization of OWA functions can be effectively integrated with parametric prediction for fair and robust optimization under uncertainty.
arXiv Detail & Related papers (2024-02-12T16:33:35Z) - Pseudo-Bayesian Optimization [7.556071491014536]
We study an axiomatic framework that elicits the minimal requirements to guarantee black-box optimization convergence.
We show how using simple local regression, and a suitable "randomized prior" construction to quantify uncertainty, not only guarantees convergence but also consistently outperforms state-of-the-art benchmarks.
arXiv Detail & Related papers (2023-10-15T07:55:28Z) - Bayesian Quality-Diversity approaches for constrained optimization
problems with mixed continuous, discrete and categorical variables [0.3626013617212667]
A new Quality-Diversity methodology based on mixed variables is proposed in the context of limited simulation budget.
The proposed approach provides valuable trade-offs for decision-markers for complex system design.
arXiv Detail & Related papers (2023-09-11T14:29:47Z) - Evolutionary Solution Adaption for Multi-Objective Metal Cutting Process
Optimization [59.45414406974091]
We introduce a framework for system flexibility that allows us to study the ability of an algorithm to transfer solutions from previous optimization tasks.
We study the flexibility of NSGA-II, which we extend by two variants: 1) varying goals, that optimize solutions for two tasks simultaneously to obtain in-between source solutions expected to be more adaptable, and 2) active-inactive genotype, that accommodates different possibilities that can be activated or deactivated.
Results show that adaption with standard NSGA-II greatly reduces the number of evaluations required for optimization to a target goal, while the proposed variants further improve the adaption costs.
arXiv Detail & Related papers (2023-05-31T12:07:50Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - Tree ensemble kernels for Bayesian optimization with known constraints
over mixed-feature spaces [54.58348769621782]
Tree ensembles can be well-suited for black-box optimization tasks such as algorithm tuning and neural architecture search.
Two well-known challenges in using tree ensembles for black-box optimization are (i) effectively quantifying model uncertainty for exploration and (ii) optimizing over the piece-wise constant acquisition function.
Our framework performs as well as state-of-the-art methods for unconstrained black-box optimization over continuous/discrete features and outperforms competing methods for problems combining mixed-variable feature spaces and known input constraints.
arXiv Detail & Related papers (2022-07-02T16:59:37Z) - Optimal Design of Electric Machine with Efficient Handling of
Constraints and Surrogate Assistance [5.387300498478744]
This article proposes an optimization method incorporated into a popularly-used evolutionary multi-objective optimization algorithm - NSGA-II.
The proposed method exploits the inexpensiveness of geometric constraints to generate feasible designs by using a custom repair operator.
arXiv Detail & Related papers (2022-06-03T17:13:29Z) - A Robust Multi-Objective Bayesian Optimization Framework Considering
Input Uncertainty [0.0]
In real-life applications like engineering design, the designer often wants to take multiple objectives as well as input uncertainty into account.
We introduce a novel Bayesian optimization framework to efficiently perform multi-objective optimization considering input uncertainty.
arXiv Detail & Related papers (2022-02-25T17:45:26Z) - Batched Data-Driven Evolutionary Multi-Objective Optimization Based on
Manifold Interpolation [6.560512252982714]
We propose a framework for implementing batched data-driven evolutionary multi-objective optimization.
It is so general that any off-the-shelf evolutionary multi-objective optimization algorithms can be applied in a plug-in manner.
Our proposed framework is featured with a faster convergence and a stronger resilience to various PF shapes.
arXiv Detail & Related papers (2021-09-12T23:54:26Z) - Robust, Accurate Stochastic Optimization for Variational Inference [68.83746081733464]
We show that common optimization methods lead to poor variational approximations if the problem is moderately large.
Motivated by these findings, we develop a more robust and accurate optimization framework by viewing the underlying algorithm as producing a Markov chain.
arXiv Detail & Related papers (2020-09-01T19:12:11Z) - Automatically Learning Compact Quality-aware Surrogates for Optimization
Problems [55.94450542785096]
Solving optimization problems with unknown parameters requires learning a predictive model to predict the values of the unknown parameters and then solving the problem using these values.
Recent work has shown that including the optimization problem as a layer in a complex training model pipeline results in predictions of iteration of unobserved decision making.
We show that we can improve solution quality by learning a low-dimensional surrogate model of a large optimization problem.
arXiv Detail & Related papers (2020-06-18T19:11:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.