Scribble-Supervised Medical Image Segmentation via Dual-Branch Network
and Dynamically Mixed Pseudo Labels Supervision
- URL: http://arxiv.org/abs/2203.02106v1
- Date: Fri, 4 Mar 2022 02:50:30 GMT
- Title: Scribble-Supervised Medical Image Segmentation via Dual-Branch Network
and Dynamically Mixed Pseudo Labels Supervision
- Authors: Xiangde Luo, Minhao Hu, Wenjun Liao, Shuwei Zhai, Tao Song, Guotai
Wang, Shaoting Zhang
- Abstract summary: We propose a simple yet efficient scribble-supervised image segmentation method and apply it to cardiac MRI segmentation.
By combining the scribble supervision and auxiliary pseudo labels supervision, the dual-branch network can efficiently learn from scribble annotations end-to-end.
- Score: 15.414578073908906
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Medical image segmentation plays an irreplaceable role in computer-assisted
diagnosis, treatment planning, and following-up. Collecting and annotating a
large-scale dataset is crucial to training a powerful segmentation model, but
producing high-quality segmentation masks is an expensive and time-consuming
procedure. Recently, weakly-supervised learning that uses sparse annotations
(points, scribbles, bounding boxes) for network training has achieved
encouraging performance and shown the potential for annotation cost reduction.
However, due to the limited supervision signal of sparse annotations, it is
still challenging to employ them for networks training directly. In this work,
we propose a simple yet efficient scribble-supervised image segmentation method
and apply it to cardiac MRI segmentation. Specifically, we employ a dual-branch
network with one encoder and two slightly different decoders for image
segmentation and dynamically mix the two decoders' predictions to generate
pseudo labels for auxiliary supervision. By combining the scribble supervision
and auxiliary pseudo labels supervision, the dual-branch network can
efficiently learn from scribble annotations end-to-end. Experiments on the
public ACDC dataset show that our method performs better than current
scribble-supervised segmentation methods and also outperforms several
semi-supervised segmentation methods.
Related papers
- Scribble-based 3D Multiple Abdominal Organ Segmentation via
Triple-branch Multi-dilated Network with Pixel- and Class-wise Consistency [20.371144313009122]
We propose a novel 3D framework with two consistency constraints for scribble-supervised multiple abdominal organ segmentation from CT.
For more stable unsupervised learning, we use voxel-wise uncertainty to rectify the soft pseudo labels and then supervise the outputs of each decoder.
Experiments on the public WORD dataset show that our method outperforms five existing scribble-supervised methods.
arXiv Detail & Related papers (2023-09-18T12:50:58Z) - Learning Semantic Segmentation with Query Points Supervision on Aerial Images [57.09251327650334]
We present a weakly supervised learning algorithm to train semantic segmentation algorithms.
Our proposed approach performs accurate semantic segmentation and improves efficiency by significantly reducing the cost and time required for manual annotation.
arXiv Detail & Related papers (2023-09-11T14:32:04Z) - Unsupervised Segmentation of Fetal Brain MRI using Deep Learning
Cascaded Registration [2.494736313545503]
Traditional deep learning-based automatic segmentation requires extensive training data with ground-truth labels.
We propose a novel method based on multi-atlas segmentation, that accurately segments multiple tissues without relying on labeled data for training.
Our method employs a cascaded deep learning network for 3D image registration, which computes small, incremental deformations to the moving image to align it precisely with the fixed image.
arXiv Detail & Related papers (2023-07-07T13:17:12Z) - Cross-supervised Dual Classifiers for Semi-supervised Medical Image
Segmentation [10.18427897663732]
Semi-supervised medical image segmentation offers a promising solution for large-scale medical image analysis.
This paper proposes a cross-supervised learning framework based on dual classifiers (DC-Net)
Experiments on LA and Pancreas-CT dataset illustrate that DC-Net outperforms other state-of-the-art methods for semi-supervised segmentation.
arXiv Detail & Related papers (2023-05-25T16:23:39Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
We propose a self-supervised correction learning paradigm for semi-supervised biomedical image segmentation.
We design a dual-task network, including a shared encoder and two independent decoders for segmentation and lesion region inpainting.
Experiments on three medical image segmentation datasets for different tasks demonstrate the outstanding performance of our method.
arXiv Detail & Related papers (2023-01-12T08:19:46Z) - Unsupervised Dense Nuclei Detection and Segmentation with Prior
Self-activation Map For Histology Images [5.3882963853819845]
We propose a self-supervised learning based approach with a Prior Self-activation Module (PSM)
PSM generates self-activation maps from the input images to avoid labeling costs and further produce pseudo masks for the downstream task.
Compared with other fully-supervised and weakly-supervised methods, our method can achieve competitive performance without any manual annotations.
arXiv Detail & Related papers (2022-10-14T14:34:26Z) - Leveraging Auxiliary Tasks with Affinity Learning for Weakly Supervised
Semantic Segmentation [88.49669148290306]
We propose a novel weakly supervised multi-task framework called AuxSegNet to leverage saliency detection and multi-label image classification as auxiliary tasks.
Inspired by their similar structured semantics, we also propose to learn a cross-task global pixel-level affinity map from the saliency and segmentation representations.
The learned cross-task affinity can be used to refine saliency predictions and propagate CAM maps to provide improved pseudo labels for both tasks.
arXiv Detail & Related papers (2021-07-25T11:39:58Z) - Every Annotation Counts: Multi-label Deep Supervision for Medical Image
Segmentation [85.0078917060652]
We propose a semi-weakly supervised segmentation algorithm to overcome this barrier.
Our approach is based on a new formulation of deep supervision and student-teacher model.
With our novel training regime for segmentation that flexibly makes use of images that are either fully labeled, marked with bounding boxes, just global labels, or not at all, we are able to cut the requirement for expensive labels by 94.22%.
arXiv Detail & Related papers (2021-04-27T14:51:19Z) - Cascaded Robust Learning at Imperfect Labels for Chest X-ray
Segmentation [61.09321488002978]
We present a novel cascaded robust learning framework for chest X-ray segmentation with imperfect annotation.
Our model consists of three independent network, which can effectively learn useful information from the peer networks.
Our methods could achieve a significant improvement on the accuracy in segmentation tasks compared to the previous methods.
arXiv Detail & Related papers (2021-04-05T15:50:16Z) - Semi-supervised Left Atrium Segmentation with Mutual Consistency
Training [60.59108570938163]
We propose a novel Mutual Consistency Network (MC-Net) for semi-supervised left atrium segmentation from 3D MR images.
Our MC-Net consists of one encoder and two slightly different decoders, and the prediction discrepancies of two decoders are transformed as an unsupervised loss.
We evaluate our MC-Net on the public Left Atrium (LA) database and it obtains impressive performance gains by exploiting the unlabeled data effectively.
arXiv Detail & Related papers (2021-03-04T09:34:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.