Unsupervised Dense Nuclei Detection and Segmentation with Prior
Self-activation Map For Histology Images
- URL: http://arxiv.org/abs/2210.07862v1
- Date: Fri, 14 Oct 2022 14:34:26 GMT
- Title: Unsupervised Dense Nuclei Detection and Segmentation with Prior
Self-activation Map For Histology Images
- Authors: Pingyi Chen, Chenglu Zhu, Zhongyi Shui, Jiatong Cai, Sunyi Zheng,
Shichuan Zhang, Lin Yang
- Abstract summary: We propose a self-supervised learning based approach with a Prior Self-activation Module (PSM)
PSM generates self-activation maps from the input images to avoid labeling costs and further produce pseudo masks for the downstream task.
Compared with other fully-supervised and weakly-supervised methods, our method can achieve competitive performance without any manual annotations.
- Score: 5.3882963853819845
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The success of supervised deep learning models in medical image segmentation
relies on detailed annotations. However, labor-intensive manual labeling is
costly and inefficient, especially in dense object segmentation. To this end,
we propose a self-supervised learning based approach with a Prior
Self-activation Module (PSM) that generates self-activation maps from the input
images to avoid labeling costs and further produce pseudo masks for the
downstream task. To be specific, we firstly train a neural network using
self-supervised learning and utilize the gradient information in the shallow
layers of the network to generate self-activation maps. Afterwards, a
semantic-guided generator is then introduced as a pipeline to transform visual
representations from PSM to pixel-level semantic pseudo masks for downstream
tasks. Furthermore, a two-stage training module, consisting of a nuclei
detection network and a nuclei segmentation network, is adopted to achieve the
final segmentation. Experimental results show the effectiveness on two public
pathological datasets. Compared with other fully-supervised and
weakly-supervised methods, our method can achieve competitive performance
without any manual annotations.
Related papers
- Auxiliary Tasks Enhanced Dual-affinity Learning for Weakly Supervised
Semantic Segmentation [79.05949524349005]
We propose AuxSegNet+, a weakly supervised auxiliary learning framework to explore the rich information from saliency maps.
We also propose a cross-task affinity learning mechanism to learn pixel-level affinities from the saliency and segmentation feature maps.
arXiv Detail & Related papers (2024-03-02T10:03:21Z) - Self-Supervised Neuron Segmentation with Multi-Agent Reinforcement
Learning [53.00683059396803]
Mask image model (MIM) has been widely used due to its simplicity and effectiveness in recovering original information from masked images.
We propose a decision-based MIM that utilizes reinforcement learning (RL) to automatically search for optimal image masking ratio and masking strategy.
Our approach has a significant advantage over alternative self-supervised methods on the task of neuron segmentation.
arXiv Detail & Related papers (2023-10-06T10:40:46Z) - Unsupervised Segmentation of Fetal Brain MRI using Deep Learning
Cascaded Registration [2.494736313545503]
Traditional deep learning-based automatic segmentation requires extensive training data with ground-truth labels.
We propose a novel method based on multi-atlas segmentation, that accurately segments multiple tissues without relying on labeled data for training.
Our method employs a cascaded deep learning network for 3D image registration, which computes small, incremental deformations to the moving image to align it precisely with the fixed image.
arXiv Detail & Related papers (2023-07-07T13:17:12Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
We propose a self-supervised correction learning paradigm for semi-supervised biomedical image segmentation.
We design a dual-task network, including a shared encoder and two independent decoders for segmentation and lesion region inpainting.
Experiments on three medical image segmentation datasets for different tasks demonstrate the outstanding performance of our method.
arXiv Detail & Related papers (2023-01-12T08:19:46Z) - Human-machine Interactive Tissue Prototype Learning for Label-efficient
Histopathology Image Segmentation [18.755759024796216]
Deep neural networks have greatly advanced histopathology image segmentation but usually require abundant data.
We present a label-efficient tissue prototype dictionary building pipeline and propose to use the obtained prototypes to guide histopathology image segmentation.
We show that our human-machine interactive tissue prototype learning method can achieve comparable segmentation performance as the fully-supervised baselines.
arXiv Detail & Related papers (2022-11-26T06:17:21Z) - Cut-Paste Consistency Learning for Semi-Supervised Lesion Segmentation [0.20305676256390934]
Semi-supervised learning has the potential to improve the data-efficiency of training data-hungry deep neural networks.
We present a simple semi-supervised learning method for lesion segmentation tasks based on the ideas of cut-paste augmentation and consistency regularization.
arXiv Detail & Related papers (2022-10-01T04:43:54Z) - Scribble-Supervised Medical Image Segmentation via Dual-Branch Network
and Dynamically Mixed Pseudo Labels Supervision [15.414578073908906]
We propose a simple yet efficient scribble-supervised image segmentation method and apply it to cardiac MRI segmentation.
By combining the scribble supervision and auxiliary pseudo labels supervision, the dual-branch network can efficiently learn from scribble annotations end-to-end.
arXiv Detail & Related papers (2022-03-04T02:50:30Z) - Leveraging Auxiliary Tasks with Affinity Learning for Weakly Supervised
Semantic Segmentation [88.49669148290306]
We propose a novel weakly supervised multi-task framework called AuxSegNet to leverage saliency detection and multi-label image classification as auxiliary tasks.
Inspired by their similar structured semantics, we also propose to learn a cross-task global pixel-level affinity map from the saliency and segmentation representations.
The learned cross-task affinity can be used to refine saliency predictions and propagate CAM maps to provide improved pseudo labels for both tasks.
arXiv Detail & Related papers (2021-07-25T11:39:58Z) - Uncertainty guided semi-supervised segmentation of retinal layers in OCT
images [4.046207281399144]
We propose a novel uncertainty-guided semi-supervised learning based on a student-teacher approach for training the segmentation network.
The proposed framework is a key contribution and applicable for biomedical image segmentation across various imaging modalities.
arXiv Detail & Related papers (2021-03-02T23:14:25Z) - Deep Semi-supervised Knowledge Distillation for Overlapping Cervical
Cell Instance Segmentation [54.49894381464853]
We propose to leverage both labeled and unlabeled data for instance segmentation with improved accuracy by knowledge distillation.
We propose a novel Mask-guided Mean Teacher framework with Perturbation-sensitive Sample Mining.
Experiments show that the proposed method improves the performance significantly compared with the supervised method learned from labeled data only.
arXiv Detail & Related papers (2020-07-21T13:27:09Z) - Weakly Supervised Deep Nuclei Segmentation Using Partial Points
Annotation in Histopathology Images [51.893494939675314]
We propose a novel weakly supervised segmentation framework based on partial points annotation.
We show that our method can achieve competitive performance compared to the fully supervised counterpart and the state-of-the-art methods.
arXiv Detail & Related papers (2020-07-10T15:41:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.