Improving Ant Colony Optimization Efficiency for Solving Large TSP
Instances
- URL: http://arxiv.org/abs/2203.02228v1
- Date: Fri, 4 Mar 2022 10:26:02 GMT
- Title: Improving Ant Colony Optimization Efficiency for Solving Large TSP
Instances
- Authors: Rafa{\l} Skinderowicz
- Abstract summary: We present a novel Ant Colony Optimization (ACO) variant, namely the Focused ACO (FACO)
FACO is a mechanism for controlling the number of differences between a newly constructed and a selected previous solution.
The mechanism results in a more focused search process, allowing to find improvements while preserving the quality of the existing solution.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Ant Colony Optimization (ACO) is a family of nature-inspired metaheuristics
often applied to finding approximate solutions to difficult optimization
problems. Despite being significantly faster than exact methods, the ACOs can
still be prohibitively slow, especially if compared to basic problem-specific
heuristics. As recent research has shown, it is possible to significantly
improve the performance through algorithm refinements and careful parallel
implementation benefiting from multi-core CPUs and dedicated accelerators. In
this paper, we present a novel ACO variant, namely the Focused ACO (FACO). One
of the core elements of the FACO is a mechanism for controlling the number of
differences between a newly constructed and a selected previous solution. The
mechanism results in a more focused search process, allowing to find
improvements while preserving the quality of the existing solution. An
additional benefit is a more efficient integration with a problem-specific
local search.
Computational study based on a range of the Traveling Salesman Problem
instances shows that the FACO outperforms the state-of-the-art ACOs when
solving large TSP instances. Specifically, the FACO required less than an hour
of an 8-core commodity CPU time to find high-quality solutions (within 1% from
the best-known results) for TSP Art Instances ranging from 100000 to 200000
nodes.
Related papers
- Make Optimization Once and for All with Fine-grained Guidance [78.14885351827232]
Learning to Optimize (L2O) enhances optimization efficiency with integrated neural networks.
L2O paradigms achieve great outcomes, e.g., refitting, generating unseen solutions iteratively or directly.
Our analyses explore general framework for learning optimization, called Diff-L2O, focusing on augmenting solutions from a wider view.
arXiv Detail & Related papers (2025-03-14T14:48:12Z) - IC/DC: Surpassing Heuristic Solvers in Combinatorial Optimization with Diffusion Models [6.260482448679642]
We present IC/DC, a learning-based optimization framework that operates without any supervision.
IC/DC is specialized in addressing problems involving two distinct sets of items, and it does not need problem-specific search processes to generate valid solutions.
We train our model in a self-supervised way to minimize the cost of the solution while adhering to the problem-specific constraints.
arXiv Detail & Related papers (2024-10-15T06:53:30Z) - Training Greedy Policy for Proposal Batch Selection in Expensive Multi-Objective Combinatorial Optimization [52.80408805368928]
We introduce a novel greedy-style subset selection algorithm for batch acquisition.
Our experiments on the red fluorescent proteins show that our proposed method achieves the baseline performance in 1.69x fewer queries.
arXiv Detail & Related papers (2024-06-21T05:57:08Z) - Iterative or Innovative? A Problem-Oriented Perspective for Code Optimization [81.88668100203913]
Large language models (LLMs) have demonstrated strong capabilities in solving a wide range of programming tasks.
In this paper, we explore code optimization with a focus on performance enhancement, specifically aiming to optimize code for minimal execution time.
arXiv Detail & Related papers (2024-06-17T16:10:10Z) - Instance-Conditioned Adaptation for Large-scale Generalization of Neural Routing Solver [15.842155380912002]
We propose a novel Instance-Conditioned Adaptation Model (ICAM) for better large-scale generalization of neural routing solvers.<n>We show that our proposed method is capable of obtaining promising results with a very fast inference time.
arXiv Detail & Related papers (2024-05-03T08:00:19Z) - Quality-Diversity Algorithms Can Provably Be Helpful for Optimization [24.694984679399315]
Quality-Diversity (QD) algorithms aim to find a set of high-performing, yet diverse solutions.
This paper tries to shed some light on the optimization ability of QD algorithms via rigorous running time analysis.
arXiv Detail & Related papers (2024-01-19T07:40:24Z) - Let the Flows Tell: Solving Graph Combinatorial Optimization Problems
with GFlowNets [86.43523688236077]
Combinatorial optimization (CO) problems are often NP-hard and out of reach for exact algorithms.
GFlowNets have emerged as a powerful machinery to efficiently sample from composite unnormalized densities sequentially.
In this paper, we design Markov decision processes (MDPs) for different problems and propose to train conditional GFlowNets to sample from the solution space.
arXiv Detail & Related papers (2023-05-26T15:13:09Z) - Searching Large Neighborhoods for Integer Linear Programs with
Contrastive Learning [39.40838358438744]
Linear Programs (ILPs) are powerful tools for modeling and solving a large number of optimization problems.
Large Neighborhood Search (LNS), as a algorithm, can find high quality solutions to ILPs faster than Branch and Bound.
We propose a novel approach, CL-LNS, that delivers state-of-the-art anytime performance on several ILP benchmarks measured by metrics.
arXiv Detail & Related papers (2023-02-03T07:15:37Z) - MARLIN: Soft Actor-Critic based Reinforcement Learning for Congestion
Control in Real Networks [63.24965775030673]
We propose a novel Reinforcement Learning (RL) approach to design generic Congestion Control (CC) algorithms.
Our solution, MARLIN, uses the Soft Actor-Critic algorithm to maximize both entropy and return.
We trained MARLIN on a real network with varying background traffic patterns to overcome the sim-to-real mismatch.
arXiv Detail & Related papers (2023-02-02T18:27:20Z) - ARES: An Efficient Algorithm with Recurrent Evaluation and Sampling-Driven Inference for Maximum Independent Set [48.57120672468062]
This paper introduces an efficient algorithm for the Maximum Independent Set (MIS) problem, incorporating two innovative techniques.
The proposed algorithm outperforms state-of-the-art algorithms in terms of solution quality, computational efficiency, and stability.
arXiv Detail & Related papers (2022-08-16T14:39:38Z) - Learning to Solve Combinatorial Graph Partitioning Problems via
Efficient Exploration [72.15369769265398]
Experimentally, ECORD achieves a new SOTA for RL algorithms on the Maximum Cut problem.
Compared to the nearest competitor, ECORD reduces the optimality gap by up to 73%.
arXiv Detail & Related papers (2022-05-27T17:13:10Z) - Flipping the switch on local exploration: Genetic Algorithms with
Reversals [0.0]
Authors show that gradient-free search techniques are suitable for providing an optimal solution in the discrete domain.
They also show that the use of multiple local searches can improve performance on local searches.
It is observed that the proposed GA variants have the least average cost across all benchmarks including the problem proposed and IC performs better than its constituents.
arXiv Detail & Related papers (2022-02-02T08:27:11Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z) - Anytime Behavior of Inexact TSP Solvers and Perspectives for Automated
Algorithm Selection [0.0]
Traveling-Salesperson-Problem (TSP) is arguably one of the best-known NP-hard optimization problems.
We extend existing benchmarking studies by addressing anytime behaviour of inexact TSP solvers.
It turns out that performance ranking of solvers is highly dependent on the focused approximation quality.
arXiv Detail & Related papers (2020-05-27T11:36:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.