Benchmarking Instance-Centric Counterfactual Algorithms for XAI: From White Box to Black Box
- URL: http://arxiv.org/abs/2203.02399v4
- Date: Tue, 11 Jun 2024 05:33:37 GMT
- Title: Benchmarking Instance-Centric Counterfactual Algorithms for XAI: From White Box to Black Box
- Authors: Catarina Moreira, Yu-Liang Chou, Chihcheng Hsieh, Chun Ouyang, Joaquim Jorge, João Madeiras Pereira,
- Abstract summary: Different machine learning models have little impact on the generation of counterfactual explanations.
Counterfactual algorithms based uniquely on proximity loss functions are not actionable and will not provide meaningful explanations.
A counterfactual inspection analysis is strongly recommended to ensure a robust examination of counterfactual explanations.
- Score: 0.26388783516590225
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This study investigates the impact of machine learning models on the generation of counterfactual explanations by conducting a benchmark evaluation over three different types of models: a decision tree (fully transparent, interpretable, white-box model), a random forest (semi-interpretable, grey-box model), and a neural network (fully opaque, black-box model). We tested the counterfactual generation process using four algorithms (DiCE, WatcherCF, prototype, and GrowingSpheresCF) in the literature in 25 different datasets. Our findings indicate that: (1) Different machine learning models have little impact on the generation of counterfactual explanations; (2) Counterfactual algorithms based uniquely on proximity loss functions are not actionable and will not provide meaningful explanations; (3) One cannot have meaningful evaluation results without guaranteeing plausibility in the counterfactual generation. Algorithms that do not consider plausibility in their internal mechanisms will lead to biased and unreliable conclusions if evaluated with the current state-of-the-art metrics; (4) A counterfactual inspection analysis is strongly recommended to ensure a robust examination of counterfactual explanations and the potential identification of biases.
Related papers
- Unifying and Verifying Mechanistic Interpretations: A Case Study with Group Operations [0.8305049591788082]
A recent line of work in mechanistic interpretability has focused on reverse-engineering the computation performed by neural networks trained on the binary operation of finite groups.
We investigate the internals of one-hidden-layer neural networks trained on this task, revealing previously unidentified structure.
We produce a more complete description of such models that unifies the explanations of previous works.
arXiv Detail & Related papers (2024-10-09T23:02:00Z) - Case-based Explainability for Random Forest: Prototypes, Critics, Counter-factuals and Semi-factuals [1.0485739694839669]
Explainable Case-Based Reasoning (XCBR) stands out as a pragmatic approach that elucidates the output of a model by referencing actual examples.
XCBR has been relatively underexplored for many algorithms such as tree-based models until recently.
arXiv Detail & Related papers (2024-08-13T07:08:54Z) - CLIMAX: An exploration of Classifier-Based Contrastive Explanations [5.381004207943597]
We propose a novel post-hoc model XAI technique that provides contrastive explanations justifying the classification of a black box.
Our method, which we refer to as CLIMAX, is based on local classifiers.
We show that we achieve better consistency as compared to baselines such as LIME, BayLIME, and SLIME.
arXiv Detail & Related papers (2023-07-02T22:52:58Z) - VCNet: A self-explaining model for realistic counterfactual generation [52.77024349608834]
Counterfactual explanation is a class of methods to make local explanations of machine learning decisions.
We present VCNet-Variational Counter Net, a model architecture that combines a predictor and a counterfactual generator.
We show that VCNet is able to both generate predictions, and to generate counterfactual explanations without having to solve another minimisation problem.
arXiv Detail & Related papers (2022-12-21T08:45:32Z) - Neural Causal Models for Counterfactual Identification and Estimation [62.30444687707919]
We study the evaluation of counterfactual statements through neural models.
First, we show that neural causal models (NCMs) are expressive enough.
Second, we develop an algorithm for simultaneously identifying and estimating counterfactual distributions.
arXiv Detail & Related papers (2022-09-30T18:29:09Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
We propose a novel framework of Model-Agnostic Counterfactual Explanation (MACE)
In our MACE approach, we propose a novel RL-based method for finding good counterfactual examples and a gradient-less descent method for improving proximity.
Experiments on public datasets validate the effectiveness with better validity, sparsity and proximity.
arXiv Detail & Related papers (2022-05-31T04:57:06Z) - Beyond Trivial Counterfactual Explanations with Diverse Valuable
Explanations [64.85696493596821]
In computer vision applications, generative counterfactual methods indicate how to perturb a model's input to change its prediction.
We propose a counterfactual method that learns a perturbation in a disentangled latent space that is constrained using a diversity-enforcing loss.
Our model improves the success rate of producing high-quality valuable explanations when compared to previous state-of-the-art methods.
arXiv Detail & Related papers (2021-03-18T12:57:34Z) - Learning outside the Black-Box: The pursuit of interpretable models [78.32475359554395]
This paper proposes an algorithm that produces a continuous global interpretation of any given continuous black-box function.
Our interpretation represents a leap forward from the previous state of the art.
arXiv Detail & Related papers (2020-11-17T12:39:44Z) - PermuteAttack: Counterfactual Explanation of Machine Learning Credit
Scorecards [0.0]
This paper is a note on new directions and methodologies for validation and explanation of Machine Learning (ML) models employed for retail credit scoring in finance.
Our proposed framework draws motivation from the field of Artificial Intelligence (AI) security and adversarial ML.
arXiv Detail & Related papers (2020-08-24T00:05:13Z) - Evaluating Explainable AI: Which Algorithmic Explanations Help Users
Predict Model Behavior? [97.77183117452235]
We carry out human subject tests to isolate the effect of algorithmic explanations on model interpretability.
Clear evidence of method effectiveness is found in very few cases.
Our results provide the first reliable and comprehensive estimates of how explanations influence simulatability.
arXiv Detail & Related papers (2020-05-04T20:35:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.