論文の概要: A Similarity-based Framework for Classification Task
- arxiv url: http://arxiv.org/abs/2203.02669v1
- Date: Sat, 5 Mar 2022 06:39:50 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-08 17:09:29.312949
- Title: A Similarity-based Framework for Classification Task
- Title(参考訳): 分類タスクのための類似性に基づくフレームワーク
- Authors: Zhongchen Ma, and Songcan Chen
- Abstract要約: 類似性に基づく手法は,複数ラベル学習のための新しい手法のクラスを生み出し,有望な性能を達成する。
類似性に基づく学習と一般化された線形モデルを組み合わせて、両方の世界のベストを達成します。
- 参考スコア(独自算出の注目度): 21.182406977328267
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Similarity-based method gives rise to a new class of methods for multi-label
learning and also achieves promising performance. In this paper, we generalize
this method, resulting in a new framework for classification task.
Specifically, we unite similarity-based learning and generalized linear models
to achieve the best of both worlds. This allows us to capture interdependencies
between classes and prevent from impairing performance of noisy classes. Each
learned parameter of the model can reveal the contribution of one class to
another, providing interpretability to some extent. Experiment results show the
effectiveness of the proposed approach on multi-class and multi-label datasets
- Abstract(参考訳): 類似性に基づく手法は,複数ラベル学習のための新しい手法のクラスを生み出し,有望な性能を達成する。
本稿では,この手法を一般化し,分類タスクのための新しい枠組みを提案する。
具体的には、類似性に基づく学習と一般化線形モデルを組み合わせて、両世界のベストを達成する。
これにより、クラス間の相互依存性をキャプチャし、騒がしいクラスのパフォーマンスを損なうのを防ぐことができます。
モデルの各学習パラメータは、あるクラスから別のクラスへの貢献を明らかにすることができ、ある程度の解釈性を提供する。
実験結果から,マルチクラス・マルチラベルデータセットにおける提案手法の有効性が示された。
関連論文リスト
- Unsupervised Estimation of Ensemble Accuracy [0.0]
いくつかの分類器の結合力を推定する手法を提案する。
ラベルに依存しない「多様性」対策に重点を置く既存のアプローチとは異なる。
本手法は,一般的な大規模顔認証データセット上で実証する。
論文 参考訳(メタデータ) (2023-11-18T02:31:36Z) - Convolutional autoencoder-based multimodal one-class classification [80.52334952912808]
1クラス分類は、単一のクラスからのデータを用いた学習のアプローチを指す。
マルチモーダルデータに適した深層学習一クラス分類法を提案する。
論文 参考訳(メタデータ) (2023-09-25T12:31:18Z) - Multi-Faceted Distillation of Base-Novel Commonality for Few-shot Object
Detection [58.48995335728938]
基本クラスと新規クラスの間に3種類のクラスに依存しない共通点を明示的に学習する。
提案手法は,既存の微調整方式のほとんどに容易に統合でき,一貫した性能向上が期待できる。
論文 参考訳(メタデータ) (2022-07-22T16:46:51Z) - Dual Path Structural Contrastive Embeddings for Learning Novel Objects [6.979491536753043]
近年の研究では、優れた特徴空間の情報を取得することが、少数のタスクにおいて良好なパフォーマンスを達成するための効果的な解決法であることが示されている。
特徴表現と分類器を学習するタスクを分離する,単純だが効果的なパラダイムを提案する。
提案手法は, インダクティブ推論とトランスダクティブ推論のいずれにおいても, 標準および一般化された少数ショット問題に対して有望な結果が得られる。
論文 参考訳(メタデータ) (2021-12-23T04:43:31Z) - Multi-Label Image Classification with Contrastive Learning [57.47567461616912]
コントラスト学習の直接適用は,複数ラベルの場合においてほとんど改善できないことを示す。
完全教師付き環境下でのコントラスト学習を用いたマルチラベル分類のための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2021-07-24T15:00:47Z) - Open-Set Representation Learning through Combinatorial Embedding [62.05670732352456]
ラベル付きクラスとラベルなしクラスの両方の例に基づく表現学習を通じて、データセットにおける新しい概念を識別することに興味がある。
異種ラベル空間上の複数の教師付きメタクラス分類器によって与えられる構成知識を用いて、自然に未知のクラス内のサンプルをクラスタリングする学習手法を提案する。
提案アルゴリズムは,未確認クラスの識別性の向上と,新しいクラスに一般化可能な既知のクラス表現の学習を併用して,新しい概念を探索する。
論文 参考訳(メタデータ) (2021-06-29T11:51:57Z) - Multi-Class Classification from Single-Class Data with Confidences [90.48669386745361]
本稿では,損失/モデル/最適化非依存のリスク最小化フレームワークを提案する。
提案手法は, 与えられた信頼度が高ノイズであっても, 簡易な修正でベイズ整合性を示す。
論文 参考訳(メタデータ) (2021-06-16T15:38:13Z) - A Joint Representation Learning and Feature Modeling Approach for
One-class Recognition [15.606362608483316]
これら2つのアプローチにはそれぞれ独自の制限があり、この2つを組み合わせることでより効果的な解が得られます。
提案手法は,生成フレームワークと一クラス分類法を組み合わせたものである。
提案手法の有効性を3つの一級分類課題で検証し,その結果を得た。
論文 参考訳(メタデータ) (2021-01-24T19:51:46Z) - Learning and Evaluating Representations for Deep One-class
Classification [59.095144932794646]
ディープワンクラス分類のための2段階フレームワークを提案する。
まず,一級データから自己教師付き表現を学習し,学習した表現に基づいて一級分類器を構築する。
実験では、視覚領域の1クラス分類ベンチマークで最先端の性能を示す。
論文 参考訳(メタデータ) (2020-11-04T23:33:41Z) - Meta Learning for Few-Shot One-class Classification [0.0]
メタ学習問題として,一級分類における意味のある特徴の学習を定式化する。
これらの表現を学習するには、類似したタスクからのマルチクラスデータのみが必要である。
数ショットの分類データセットを、数ショットの1クラスの分類シナリオに適応させることで、我々のアプローチを検証する。
論文 参考訳(メタデータ) (2020-09-11T11:35:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。