論文の概要: Recursive Reasoning Graph for Multi-Agent Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2203.02844v1
- Date: Sun, 6 Mar 2022 00:57:50 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-09 08:58:09.034924
- Title: Recursive Reasoning Graph for Multi-Agent Reinforcement Learning
- Title(参考訳): マルチエージェント強化学習のための再帰推論グラフ
- Authors: Xiaobai Ma, David Isele, Jayesh K. Gupta, Kikuo Fujimura, Mykel J.
Kochenderfer
- Abstract要約: マルチエージェント強化学習(MARL)は、複数のエージェントが相互に相互作用するポリシーを同時に学習する効率的な方法である。
既存のアルゴリズムは、他のエージェントに対する自己行動の影響を正確に予測できない。
提案アルゴリズムはRecursive Reasoning Graph (R2G)と呼ばれ、複数のマルチエージェント粒子およびロボットゲームにおける最先端の性能を示す。
- 参考スコア(独自算出の注目度): 44.890087638530524
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-agent reinforcement learning (MARL) provides an efficient way for
simultaneously learning policies for multiple agents interacting with each
other. However, in scenarios requiring complex interactions, existing
algorithms can suffer from an inability to accurately anticipate the influence
of self-actions on other agents. Incorporating an ability to reason about other
agents' potential responses can allow an agent to formulate more effective
strategies. This paper adopts a recursive reasoning model in a
centralized-training-decentralized-execution framework to help learning agents
better cooperate with or compete against others. The proposed algorithm,
referred to as the Recursive Reasoning Graph (R2G), shows state-of-the-art
performance on multiple multi-agent particle and robotics games.
- Abstract(参考訳): マルチエージェント強化学習(MARL)は、複数のエージェントが相互に相互作用するポリシーを同時に学習する効率的な方法である。
しかし、複雑な相互作用を必要とするシナリオでは、既存のアルゴリズムは他のエージェントに対する自己行動の影響を正確に予測できない。
他のエージェントの潜在的な反応を推論する能力を組み込むことで、エージェントはより効果的な戦略を定式化することができる。
本稿では,学習エージェントが他者との協力や競争をより良くするために,集中型学習・分散実行フレームワークにおいて再帰的推論モデルを採用する。
提案アルゴリズムはRecursive Reasoning Graph (R2G)と呼ばれ、複数のマルチエージェント粒子およびロボットゲームにおける最先端の性能を示す。
関連論文リスト
- From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
本稿では,エージェントの強化学習プロセスの最適化にステップワイド報酬を利用するStepAgentを紹介する。
エージェント反射とポリシー調整を容易にする暗黙の逆・逆の強化学習手法を提案する。
論文 参考訳(メタデータ) (2024-11-06T10:35:11Z) - Active Legibility in Multiagent Reinforcement Learning [3.7828554251478734]
正当性指向のフレームワークは、エージェントが他人の振る舞いを最適化するのを助けるために、妥当なアクションを実行することを可能にする。
実験の結果、新しいフレームワークは、複数のマルチエージェント強化学習アルゴリズムと比較して、より効率的で、トレーニング時間が少ないことが示されている。
論文 参考訳(メタデータ) (2024-10-28T12:15:49Z) - Textualized Agent-Style Reasoning for Complex Tasks by Multiple Round LLM Generation [49.27250832754313]
我々は、llmベースの自律エージェントフレームワークであるAgentCOTを紹介する。
それぞれのステップで、AgentCOTはアクションを選択し、それを実行して、証拠を裏付ける中間結果を得る。
エージェントCOTの性能を高めるための2つの新しい戦略を導入する。
論文 参考訳(メタデータ) (2024-09-19T02:20:06Z) - MADiff: Offline Multi-agent Learning with Diffusion Models [79.18130544233794]
拡散モデル(DM)は、最近オフライン強化学習を含む様々なシナリオで大きな成功を収めた。
この問題に対処する新しい生成型マルチエージェント学習フレームワークであるMADiffを提案する。
本実験は,マルチエージェント学習タスクにおけるベースラインアルゴリズムと比較して,MADiffの優れた性能を示す。
論文 参考訳(メタデータ) (2023-05-27T02:14:09Z) - Graph Exploration for Effective Multi-agent Q-Learning [46.723361065955544]
本稿では,エージェント間のグラフベース通信を用いたマルチエージェント強化学習(MARL)の探索手法を提案する。
エージェントが受け取った個々の報酬は、他のエージェントのアクションとは独立していると仮定する一方で、そのポリシーは結合されている。
提案手法では,より効率的な爆発行動を実行するために,近隣のエージェントが協調して状態-作用空間の不確かさを推定する。
論文 参考訳(メタデータ) (2023-04-19T10:28:28Z) - Hierarchical Reinforcement Learning with Opponent Modeling for
Distributed Multi-agent Cooperation [13.670618752160594]
深層強化学習(DRL)はエージェントと環境の相互作用を通じて多エージェント協調に有望なアプローチを提供する。
従来のDRLソリューションは、ポリシー探索中に連続的なアクション空間を持つ複数のエージェントの高次元に悩まされる。
効率的な政策探索のための高レベル意思決定と低レベル個別制御を用いた階層型強化学習手法を提案する。
論文 参考訳(メタデータ) (2022-06-25T19:09:29Z) - SA-MATD3:Self-attention-based multi-agent continuous control method in
cooperative environments [12.959163198988536]
既存のアルゴリズムは、エージェントの数が増加するにつれて、不均一な学習度の問題に悩まされる。
マルチエージェントアクター批評家のための新しい構造を提案し,批評家ネットワークに自己注意機構を適用した。
提案アルゴリズムは、リプレイメモリバッファ内のサンプルをフル活用して、エージェントのクラスの振る舞いを学習する。
論文 参考訳(メタデータ) (2021-07-01T08:15:05Z) - What is Going on Inside Recurrent Meta Reinforcement Learning Agents? [63.58053355357644]
recurrent meta reinforcement learning (meta-rl)エージェントは「学習アルゴリズムの学習」を目的としてrecurrent neural network (rnn)を使用するエージェントである。
部分観測可能なマルコフ決定プロセス(POMDP)フレームワークを用いてメタRL問題を再構成することにより,これらのエージェントの内部動作機構を明らかにする。
論文 参考訳(メタデータ) (2021-04-29T20:34:39Z) - Multi-Agent Interactions Modeling with Correlated Policies [53.38338964628494]
本稿では,マルチエージェントインタラクションモデリング問題をマルチエージェント模倣学習フレームワークに実装する。
相関ポリシー(CoDAIL)を用いた分散型適応模倣学習アルゴリズムの開発
様々な実験により、CoDAILはデモレーターに近い複雑な相互作用をより良く再生できることが示されている。
論文 参考訳(メタデータ) (2020-01-04T17:31:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。