論文の概要: Textualized Agent-Style Reasoning for Complex Tasks by Multiple Round LLM Generation
- arxiv url: http://arxiv.org/abs/2409.12411v1
- Date: Thu, 19 Sep 2024 02:20:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 15:03:37.747631
- Title: Textualized Agent-Style Reasoning for Complex Tasks by Multiple Round LLM Generation
- Title(参考訳): 複合作業に対する複数ラウンドLLM生成によるテキスト化エージェントスタイル推論
- Authors: Chen Liang, Zhifan Feng, Zihe Liu, Wenbin Jiang, Jinan Xu, Yufeng Chen, Yong Wang,
- Abstract要約: 我々は、llmベースの自律エージェントフレームワークであるAgentCOTを紹介する。
それぞれのステップで、AgentCOTはアクションを選択し、それを実行して、証拠を裏付ける中間結果を得る。
エージェントCOTの性能を高めるための2つの新しい戦略を導入する。
- 参考スコア(独自算出の注目度): 49.27250832754313
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Chain-of-thought prompting significantly boosts the reasoning ability of large language models but still faces three issues: hallucination problem, restricted interpretability, and uncontrollable generation. To address these challenges, we present AgentCOT, a llm-based autonomous agent framework, which can solve complex problems in an agent-style manner by multiple round LLM generation. At each step, AgentCOT selects an action and executes it to yield an intermediate result with supporting evidence. In addition, we integrate the step's index into the reasoning process to form a graph structure for complex inference logic. We introduce two new strategies to enhance the performance of AgentCOT.We conduct extensive experiments to verify the effectiveness of our method on six common benchmarks. Results exhibit that our method brings in substantial improvements over current competitive approaches.
- Abstract(参考訳): 思考の連鎖は、大きな言語モデルの推論能力を大幅に向上させるが、幻覚問題、制限された解釈可能性、制御不能な生成という3つの問題に直面している。
これらの課題に対処するために,複数ラウンドLLM生成によるエージェントスタイルの複雑な問題を解く,llmベースの自律エージェントフレームワークであるAgentCOTを提案する。
それぞれのステップで、AgentCOTはアクションを選択し、それを実行して、証拠を裏付ける中間結果を得る。
さらに、ステップのインデックスを推論プロセスに統合し、複雑な推論ロジックのためのグラフ構造を形成する。
我々は,エージェントCOTの性能向上のための2つの新しい手法を導入し,提案手法の有効性を6つの共通ベンチマークで検証した。
その結果,本手法は現在の競合手法よりも大幅に改善されていることがわかった。
関連論文リスト
- Enhancing Multi-Agent Consensus through Third-Party LLM Integration: Analyzing Uncertainty and Mitigating Hallucinations in Large Language Models [1.4582633500696451]
大きな言語モデル(LLM)は、複雑な推論タスクを扱う際にも問題に直面します。
本稿では,知識境界を拡張するために異なるLSMを統合する新しい手法を提案する。
算術的データセットの実験により,本手法の有効性が検証された。
論文 参考訳(メタデータ) (2024-11-25T08:42:33Z) - From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
本稿では,エージェントの強化学習プロセスの最適化にステップワイド報酬を利用するStepAgentを紹介する。
エージェント反射とポリシー調整を容易にする暗黙の逆・逆の強化学習手法を提案する。
論文 参考訳(メタデータ) (2024-11-06T10:35:11Z) - CoT Rerailer: Enhancing the Reliability of Large Language Models in Complex Reasoning Tasks through Error Detection and Correction [9.44858963874474]
CoT(Chain-of-Thought)により、LLM(Large Language Models)の複雑な推論能力が向上する。
我々は,これらの課題に対処するために,自己整合性とマルチエージェントの議論システムを用いたCoTリレーラを提案する。
様々な知識領域における多様な質問応答データセットにまたがるアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2024-08-25T21:20:17Z) - Optimizing Collaboration of LLM based Agents for Finite Element Analysis [1.5039745292757671]
本稿では,Large Language Models (LLM) 内の複数のエージェント間の相互作用について,プログラミングおよびコーディングタスクの文脈で検討する。
我々はAutoGenフレームワークを利用してエージェント間の通信を容易にし、各セットアップの40のランダムランからの成功率に基づいて異なる構成を評価する。
論文 参考訳(メタデータ) (2024-08-23T23:11:08Z) - Watch Every Step! LLM Agent Learning via Iterative Step-Level Process Refinement [50.481380478458945]
反復的なステップレベルプロセスリファインメント(IPR)フレームワークは、エージェントトレーニングを強化するためのステップバイステップのガイダンスを提供する。
3つの複雑なエージェントタスクに関する我々の実験は、我々のフレームワークが様々な強力なベースラインより優れていることを示した。
論文 参考訳(メタデータ) (2024-06-17T03:29:13Z) - Adaptive In-conversation Team Building for Language Model Agents [33.03550687362213]
複数の大規模言語モデル(LLM)エージェントを活用することは、複雑なタスクに取り組む上で有望なアプローチであることが示されている。
私たちの新しい適応型チーム構築パラダイムは、Captain Agentという新しいエージェント設計を通じて実現された柔軟なソリューションを提供します。
6つの実世界のシナリオに対する包括的な評価は、Captain Agentが既存のマルチエージェントメソッドを大幅に上回っていることを示している。
論文 参考訳(メタデータ) (2024-05-29T18:08:37Z) - Enhancing the General Agent Capabilities of Low-Parameter LLMs through Tuning and Multi-Branch Reasoning [56.82041895921434]
オープンソースの事前訓練された大規模言語モデル(LLM)は、強力な言語理解と生成能力を示す。
現実世界の複雑な問題に対処するエージェントとして使用される場合、ChatGPTやGPT-4のような大型の商用モデルに比べてパフォーマンスははるかに劣る。
論文 参考訳(メタデータ) (2024-03-29T03:48:12Z) - On the Complexity of Multi-Agent Decision Making: From Learning in Games
to Partial Monitoring [105.13668993076801]
マルチエージェント強化学習(MARL)理論における中心的な問題は、構造条件やアルゴリズムの原理がサンプル効率の学習保証につながるかを理解することである。
本稿では,複数のエージェントを用いた対話型意思決定のための一般的な枠組みとして,この問題について考察する。
マルチエージェント意思決定における統計的複雑性を特徴付けることは、単一エージェント決定の統計的複雑性を特徴付けることと等価であることを示す。
論文 参考訳(メタデータ) (2023-05-01T06:46:22Z) - Enhancing Chain-of-Thoughts Prompting with Iterative Bootstrapping in Large Language Models [81.01397924280612]
大規模言語モデル (LLM) は、ステップ・バイ・ステップ・チェーン・オブ・シークレット (CoT) をデモンストレーションとして組み込むことで、様々な推論タスクにおいて高い効果的な性能を達成することができる。
本稿では,イターCoT (Iterative bootstrapping in Chain-of-Thoughts Prompting) を導入する。
論文 参考訳(メタデータ) (2023-04-23T13:54:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。