Detection of Parasitic Eggs from Microscopy Images and the emergence of
a new dataset
- URL: http://arxiv.org/abs/2203.02940v1
- Date: Sun, 6 Mar 2022 11:44:35 GMT
- Title: Detection of Parasitic Eggs from Microscopy Images and the emergence of
a new dataset
- Authors: Perla Mayo, Nantheera Anantrasirichai, Thanarat H. Chalidabhongse,
Duangdao Palasuwan and Alin Achim
- Abstract summary: Automatic detection of parasitic eggs in microscopy images has the potential to increase the efficiency of human experts.
We exploit successful architectures for detection, adapting them to tackle a different domain.
We demonstrate results produced by both a Generative Adversarial Network (GAN) and Faster-RCNN, for image enhancement and object detection.
- Score: 8.957918272018045
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automatic detection of parasitic eggs in microscopy images has the potential
to increase the efficiency of human experts whilst also providing an objective
assessment. The time saved by such a process would both help ensure a prompt
treatment to patients, and off-load excessive work from experts' shoulders.
Advances in deep learning inspired us to exploit successful architectures for
detection, adapting them to tackle a different domain. We propose a framework
that exploits two such state-of-the-art models. Specifically, we demonstrate
results produced by both a Generative Adversarial Network (GAN) and
Faster-RCNN, for image enhancement and object detection respectively, on
microscopy images of varying quality. The use of these techniques yields
encouraging results, though further improvements are still needed for certain
egg types whose detection still proves challenging. As a result, a new dataset
has been created and made publicly available, providing an even wider range of
classes and variability.
Related papers
- StealthDiffusion: Towards Evading Diffusion Forensic Detection through Diffusion Model [62.25424831998405]
StealthDiffusion is a framework that modifies AI-generated images into high-quality, imperceptible adversarial examples.
It is effective in both white-box and black-box settings, transforming AI-generated images into high-quality adversarial forgeries.
arXiv Detail & Related papers (2024-08-11T01:22:29Z) - Self-supervised Vision Transformer are Scalable Generative Models for Domain Generalization [0.13108652488669734]
We propose a novel generative method for domain generalization in histopathology images.
Our method employs a generative, self-supervised Vision Transformer to dynamically extract characteristics of image patches.
Experiments conducted on two distinct histopathology datasets demonstrate the effectiveness of our proposed approach.
arXiv Detail & Related papers (2024-07-03T08:20:27Z) - Improving Interpretability and Robustness for the Detection of AI-Generated Images [6.116075037154215]
We analyze existing state-of-the-art AIGI detection methods based on frozen CLIP embeddings.
We show how to interpret them, shedding light on how images produced by various AI generators differ from real ones.
arXiv Detail & Related papers (2024-06-21T10:33:09Z) - Masked Autoencoders for Microscopy are Scalable Learners of Cellular Biology [2.7280901660033643]
This work explores the scaling properties of weakly supervised classifiers and self-supervised masked autoencoders (MAEs)
Our results show that ViT-based MAEs outperform weakly supervised classifiers on a variety of tasks, achieving as much as a 11.5% relative improvement when recalling known biological relationships curated from public databases.
We develop a new channel-agnostic MAE architecture (CA-MAE) that allows for inputting images of different numbers and orders of channels at inference time.
arXiv Detail & Related papers (2024-04-16T02:42:06Z) - Optimizations of Autoencoders for Analysis and Classification of
Microscopic In Situ Hybridization Images [68.8204255655161]
We propose a deep-learning framework to detect and classify areas of microscopic images with similar levels of gene expression.
The data we analyze requires an unsupervised learning model for which we employ a type of Artificial Neural Network - Deep Learning Autoencoders.
arXiv Detail & Related papers (2023-04-19T13:45:28Z) - A Robust Ensemble Model for Patasitic Egg Detection and Classification [9.449507409551842]
Intestinal parasitic infections, as a leading causes of morbidity worldwide, still lacks time-saving, high-sensitivity and user-friendly examination method.
In this paper, we apply several object detectors such as YOLOv5 and variant cascadeRCNNs to automatically discriminate parasitic eggs in microscope images.
arXiv Detail & Related papers (2022-07-04T13:53:46Z) - Unsupervised deep learning techniques for powdery mildew recognition
based on multispectral imaging [63.62764375279861]
This paper presents a deep learning approach to automatically recognize powdery mildew on cucumber leaves.
We focus on unsupervised deep learning techniques applied to multispectral imaging data.
We propose the use of autoencoder architectures to investigate two strategies for disease detection.
arXiv Detail & Related papers (2021-12-20T13:29:13Z) - Parasitic Egg Detection and Classification in Low-cost Microscopic
Images using Transfer Learning [1.6050172226234583]
We propose a CNN-based technique using transfer learning strategy to enhance the efficiency of automatic parasite classification in poor-quality microscopic images.
Our proposed framework outperforms the state-of-the-art object recognition methods.
Our system combined with final decision from an expert may improve the real faecal examination with low-cost microscopes.
arXiv Detail & Related papers (2021-07-02T11:05:45Z) - A parameter refinement method for Ptychography based on Deep Learning
concepts [55.41644538483948]
coarse parametrisation in propagation distance, position errors and partial coherence frequently menaces the experiment viability.
A modern Deep Learning framework is used to correct autonomously the setup incoherences, thus improving the quality of a ptychography reconstruction.
We tested our system on both synthetic datasets and also on real data acquired at the TwinMic beamline of the Elettra synchrotron facility.
arXiv Detail & Related papers (2021-05-18T10:15:17Z) - Generative Adversarial U-Net for Domain-free Medical Image Augmentation [49.72048151146307]
The shortage of annotated medical images is one of the biggest challenges in the field of medical image computing.
In this paper, we develop a novel generative method named generative adversarial U-Net.
Our newly designed model is domain-free and generalizable to various medical images.
arXiv Detail & Related papers (2021-01-12T23:02:26Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.