論文の概要: Offline Deep Reinforcement Learning for Dynamic Pricing of Consumer
Credit
- arxiv url: http://arxiv.org/abs/2203.03003v1
- Date: Sun, 6 Mar 2022 16:32:53 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-08 15:13:28.134118
- Title: Offline Deep Reinforcement Learning for Dynamic Pricing of Consumer
Credit
- Title(参考訳): 消費者信用の動的価格設定のためのオフライン深層強化学習
- Authors: Raad Khraishi and Ramin Okhrati
- Abstract要約: オフライン深層学習における最近の進歩を利用した消費者信用の価格設定手法を提案する。
このアプローチは静的なデータセットに依存しており、要求の関数形式を前提としません。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a method for pricing consumer credit using recent advances in
offline deep reinforcement learning. This approach relies on a static dataset
and requires no assumptions on the functional form of demand. Using both real
and synthetic data on consumer credit applications, we demonstrate that our
approach using the conservative Q-Learning algorithm is capable of learning an
effective personalized pricing policy without any online interaction or price
experimentation.
- Abstract(参考訳): オフライン深層学習における最近の進歩を利用した消費者信用の価格設定手法を提案する。
このアプローチは静的データセットに依存しており、機能的な要求形式を前提としない。
消費者信用アプリケーションにおける実データと合成データの両方を用いて、保守的q-learningアルゴリズムを用いたアプローチが、オンラインインタラクションや価格実験なしに、効果的なパーソナライズされた価格ポリシーを学習できることを実証する。
関連論文リスト
- Utility Fairness in Contextual Dynamic Pricing with Demand Learning [23.26236046836737]
本稿では,ユーティリティフェアネス制約下でのパーソナライズされた価格設定のための新しいコンテキスト帯域幅アルゴリズムを提案する。
動的価格設定と需要学習を取り入れた当社のアプローチは,価格戦略における公正性の重要課題に対処する。
論文 参考訳(メタデータ) (2023-11-28T05:19:23Z) - Optimizing Credit Limit Adjustments Under Adversarial Goals Using
Reinforcement Learning [42.303733194571905]
我々は、強化学習技術を用いて最適なクレジットカード制限調整ポリシーを発見し、自動化することを模索する。
本研究は、信用限度調整に強化学習フレームワークを適用するための概念構造を確立する。
論文 参考訳(メタデータ) (2023-06-27T16:10:36Z) - Re-thinking Data Availablity Attacks Against Deep Neural Networks [53.64624167867274]
本稿では、未学習例の概念を再検討し、既存のロバストな誤り最小化ノイズが不正確な最適化目標であることを示す。
本稿では,計算時間要件の低減による保護性能の向上を図った新しい最適化パラダイムを提案する。
論文 参考訳(メタデータ) (2023-05-18T04:03:51Z) - Online Learning for Incentive-Based Demand Response [0.0]
我々は、需要応答(DR)リソースを管理するためにオンライン学習の問題を考察する。
報酬価格の摂動を考慮した最小二乗を用いたオンライン学習手法を提案する。
論文 参考訳(メタデータ) (2023-03-27T22:08:05Z) - Personalized Pricing with Invalid Instrumental Variables:
Identification, Estimation, and Policy Learning [5.372349090093469]
本研究は,インストゥルメンタル変数アプローチを用いて,内在性の下でのオフラインパーソナライズド価格について検討する。
Invalid iNsTrumental変数を用いたパーソナライズされたプライシングのための新しいポリシー学習手法を提案する。
論文 参考訳(メタデータ) (2023-02-24T14:50:47Z) - Real-Time Evaluation in Online Continual Learning: A New Hope [104.53052316526546]
計算コストに関して,現在の継続学習(CL)手法を評価した。
簡単なベースラインは、この評価の下で最先端のCL法より優れている。
これは、既存のCL文献の大部分は、実用的でない特定の種類のストリームに適合していることを驚くほど示唆している。
論文 参考訳(メタデータ) (2023-02-02T12:21:10Z) - Curriculum Offline Imitation Learning [72.1015201041391]
オフラインの強化学習タスクでは、エージェントは、環境とのさらなるインタラクションなしに、事前にコンパイルされたデータセットから学ぶ必要がある。
我々は,適応的な近隣政策を模倣する経験的選択戦略を,より高いリターンで活用するテキストカリキュラムオフライン学習(COIL)を提案する。
連続制御ベンチマークでは、COILを模倣ベースとRLベースの両方の手法と比較し、混合データセット上で平凡な振る舞いを学ぶことを避けるだけでなく、最先端のオフラインRL手法と競合することを示します。
論文 参考訳(メタデータ) (2021-11-03T08:02:48Z) - Combining Online Learning and Offline Learning for Contextual Bandits
with Deficient Support [53.11601029040302]
現在のオフライン政治学習アルゴリズムは、主に逆確率スコア(IPS)重み付けに基づいている。
オフライン学習とオンライン探索を組み合わせた新しい手法を提案する。
提案手法は,最小限のオンライン探索数を用いて理論的保証を伴う最適政策を決定する。
論文 参考訳(メタデータ) (2021-07-24T05:07:43Z) - Model-Augmented Q-learning [112.86795579978802]
モデルベースRLの構成要素を付加したMFRLフレームワークを提案する。
具体的には、$Q$-valuesだけでなく、共有ネットワークにおける遷移と報酬の両方を見積もる。
提案手法は,MQL (Model-augmented $Q$-learning) とよばれる提案手法により,真に報いられた学習によって得られる解と同一のポリシ不変解が得られることを示す。
論文 参考訳(メタデータ) (2021-02-07T17:56:50Z) - Generative Inverse Deep Reinforcement Learning for Online Recommendation [62.09946317831129]
オンラインレコメンデーションのための新しい逆強化学習手法InvRecを提案する。
InvRecは、オンラインレコメンデーションのために、ユーザの行動から報酬関数を自動的に抽出する。
論文 参考訳(メタデータ) (2020-11-04T12:12:25Z) - Model Distillation for Revenue Optimization: Interpretable Personalized
Pricing [8.07517029746865]
我々は、複雑なブラックボックス機械学習アルゴリズムから知識を抽出する、カスタマイズされた、規範的なツリーベースアルゴリズムを提案する。
同様のバリュエーションで顧客を分割し、解釈可能性を維持しながら収益を最大化するような価格を定めている。
論文 参考訳(メタデータ) (2020-07-03T18:33:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。