論文の概要: Utility Fairness in Contextual Dynamic Pricing with Demand Learning
- arxiv url: http://arxiv.org/abs/2311.16528v1
- Date: Tue, 28 Nov 2023 05:19:23 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-29 19:49:23.373801
- Title: Utility Fairness in Contextual Dynamic Pricing with Demand Learning
- Title(参考訳): 需要学習によるコンテキスト動的価格の実用性
- Authors: Xi Chen, David Simchi-Levi, Yining Wang
- Abstract要約: 本稿では,ユーティリティフェアネス制約下でのパーソナライズされた価格設定のための新しいコンテキスト帯域幅アルゴリズムを提案する。
動的価格設定と需要学習を取り入れた当社のアプローチは,価格戦略における公正性の重要課題に対処する。
- 参考スコア(独自算出の注目度): 23.26236046836737
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces a novel contextual bandit algorithm for personalized
pricing under utility fairness constraints in scenarios with uncertain demand,
achieving an optimal regret upper bound. Our approach, which incorporates
dynamic pricing and demand learning, addresses the critical challenge of
fairness in pricing strategies. We first delve into the static full-information
setting to formulate an optimal pricing policy as a constrained optimization
problem. Here, we propose an approximation algorithm for efficiently and
approximately computing the ideal policy.
We also use mathematical analysis and computational studies to characterize
the structures of optimal contextual pricing policies subject to fairness
constraints, deriving simplified policies which lays the foundations of more
in-depth research and extensions.
Further, we extend our study to dynamic pricing problems with demand
learning, establishing a non-standard regret lower bound that highlights the
complexity added by fairness constraints. Our research offers a comprehensive
analysis of the cost of fairness and its impact on the balance between utility
and revenue maximization. This work represents a step towards integrating
ethical considerations into algorithmic efficiency in data-driven dynamic
pricing.
- Abstract(参考訳): 本稿では,需要の不確実性を考慮したシナリオにおいて,実用フェアネス制約下でのパーソナライズされた価格設定のための新しいコンテキストバンディットアルゴリズムを提案する。
動的価格設定と需要学習を取り入れた当社のアプローチは,価格戦略における公正性の重要課題に対処する。
まず、静的な全情報設定を精査し、最適な価格設定を制約付き最適化問題として定式化する。
本稿では,理想ポリシーを効率的に,ほぼ計算するための近似アルゴリズムを提案する。
また,より詳細な研究と拡張の基礎を規定する簡略な方針を導出し,公平性制約に基づく最適文脈価格政策の構造を特徴付けるために,数理解析と計算研究を用いる。
さらに,本研究を需要学習を伴う動的価格問題に拡張し,公平性制約が付加する複雑性を強調する非標準後悔下限を確立した。
本研究は,公正のコストとその効用と収益の最大化のバランスへの影響を包括的に分析するものである。
この研究は、データ駆動動的価格設定のアルゴリズム効率への倫理的配慮を統合するための一歩である。
関連論文リスト
- Transfer Learning for Nonparametric Contextual Dynamic Pricing [17.420508136662257]
動的価格戦略は、市場条件や顧客特性に基づいて価格を調整することで、企業が収益を最大化する上で不可欠である。
この制限を克服するための有望なアプローチの1つは、関連する製品や市場からの情報を活用して、焦点となる価格決定を知らせることである。
本稿では,ソースドメインからの事前収集データを効果的に活用し,対象ドメインの価格決定を効率化する,新しいTLDPアルゴリズムを提案する。
論文 参考訳(メタデータ) (2025-01-31T01:05:04Z) - Joint Pricing and Resource Allocation: An Optimal Online-Learning Approach [20.70943884841438]
ネット全体の利益を最大化するために、価格と在庫を共同で決定するオンライン学習の地平について検討する。
我々は,複数のOCO上での信頼境界戦略を利用した効率的なアルゴリズムを開発した。
論文 参考訳(メタデータ) (2025-01-29T23:23:54Z) - Statistical Analysis of Policy Space Compression Problem [54.1754937830779]
政策探索手法は強化学習において重要であり、継続的な状態反応と部分的に観察可能な問題に対処するための枠組みを提供する。
政策圧縮による政策空間の削減は、学習プロセスを加速するための強力で報酬のないアプローチとして現れます。
この手法は方針空間をより小さく代表的な集合に凝縮し、元の効果のほとんどを維持している。
論文 参考訳(メタデータ) (2024-11-15T02:46:55Z) - Deep Generative Demand Learning for Newsvendor and Pricing [7.594251468240168]
我々は、機能ベースのニュースベンダ問題において、データ駆動の在庫と価格決定について検討する。
本稿では,これらの課題に対処するために条件付き深層生成モデル(cDGM)を活用する新しいアプローチを提案する。
我々は、利益予測の整合性や最適解への決定の収束など、我々のアプローチに対する理論的保証を提供する。
論文 参考訳(メタデータ) (2024-11-13T14:17:26Z) - A Tale of Two Cities: Pessimism and Opportunism in Offline Dynamic Pricing [20.06425698412548]
本稿では,データカバレッジを前提としないオフライン動的価格について検討する。
我々は、関連する価格が観測されていない需要パラメータに限定した部分的識別を確立する。
提案した部分的識別枠組みに悲観的・機会論的戦略を取り入れて,推定方針を導出する。
論文 参考訳(メタデータ) (2024-11-12T19:09:41Z) - A Primal-Dual Online Learning Approach for Dynamic Pricing of Sequentially Displayed Complementary Items under Sale Constraints [54.46126953873298]
顧客に対して順次表示される補完アイテムの動的価格設定の問題に対処する。
各項目の価格を個別に最適化するのは効果がないため、補完項目のコヒーレントな価格ポリシーが不可欠である。
実世界のデータからランダムに生成した合成設定を用いて,我々のアプローチを実証的に評価し,制約違反や後悔の観点からその性能を比較した。
論文 参考訳(メタデータ) (2024-07-08T09:55:31Z) - Structured Dynamic Pricing: Optimal Regret in a Global Shrinkage Model [50.06663781566795]
消費者の嗜好と価格感が時間とともに変化する動的モデルを考える。
我々は,モデルパラメータの順序を事前に把握している透視者と比較して,収益損失が予想される,後悔による動的価格政策の性能を計測する。
提案した政策の最適性を示すだけでなく,政策立案のためには,利用可能な構造情報を組み込むことが不可欠であることを示す。
論文 参考訳(メタデータ) (2023-03-28T00:23:23Z) - Reinforcement Learning with Stepwise Fairness Constraints [50.538878453547966]
本稿では,段階的公正性制約を伴う強化学習について紹介する。
我々は、ポリシーの最適性と公正性違反に関して、強力な理論的保証を持つ学習アルゴリズムを提供する。
論文 参考訳(メタデータ) (2022-11-08T04:06:23Z) - Online Regularization towards Always-Valid High-Dimensional Dynamic
Pricing [19.11333865618553]
本稿では,動的価格ポリシーに基づくオンライン統計学習を理論的保証付きで設計するための新しい手法を提案する。
提案手法は,提案する楽観的オンライン定期化最大価格(OORMLP)に3つの大きな利点がある。
理論的には,提案したOORMLPアルゴリズムは高次元モデルの空間構造を利用し,決定の地平線における対数的後悔を保証する。
論文 参考訳(メタデータ) (2020-07-05T23:52:09Z) - Hierarchical Adaptive Contextual Bandits for Resource Constraint based
Recommendation [49.69139684065241]
コンテキスト多重武装バンディット(MAB)は、様々な問題において最先端のパフォーマンスを達成する。
本稿では,階層型適応型文脈帯域幅法(HATCH)を提案する。
論文 参考訳(メタデータ) (2020-04-02T17:04:52Z) - Cost-Sensitive Portfolio Selection via Deep Reinforcement Learning [100.73223416589596]
深層強化学習を用いたコスト依存型ポートフォリオ選択手法を提案する。
具体的には、価格系列パターンと資産相関の両方を抽出するために、新しい2ストリームポートフォリオポリシーネットワークを考案した。
蓄積したリターンを最大化し、強化学習によるコストの両立を抑えるため、新たなコスト感受性報酬関数が開発された。
論文 参考訳(メタデータ) (2020-03-06T06:28:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。