論文の概要: Hierarchically Structured Scheduling and Execution of Tasks in a
Multi-Agent Environment
- arxiv url: http://arxiv.org/abs/2203.03021v1
- Date: Sun, 6 Mar 2022 18:11:34 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-08 15:59:21.245515
- Title: Hierarchically Structured Scheduling and Execution of Tasks in a
Multi-Agent Environment
- Title(参考訳): マルチエージェント環境におけるタスクの階層的スケジューリングと実行
- Authors: Diogo S. Carvalho and Biswa Sengupta
- Abstract要約: 倉庫環境では、タスクが動的に出現するので、早すぎると労働力にマッチするタスク管理システムは、必ずしも最適ではない。
本稿では,高レベルスケジューリング問題と低レベルマルチエージェント問題の両方を解決するために,深層強化学習を提案する。
- 参考スコア(独自算出の注目度): 1.0660480034605238
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In a warehouse environment, tasks appear dynamically. Consequently, a task
management system that matches them with the workforce too early (e.g., weeks
in advance) is necessarily sub-optimal. Also, the rapidly increasing size of
the action space of such a system consists of a significant problem for
traditional schedulers. Reinforcement learning, however, is suited to deal with
issues requiring making sequential decisions towards a long-term, often remote,
goal. In this work, we set ourselves on a problem that presents itself with a
hierarchical structure: the task-scheduling, by a centralised agent, in a
dynamic warehouse multi-agent environment and the execution of one such
schedule, by decentralised agents with only partial observability thereof. We
propose to use deep reinforcement learning to solve both the high-level
scheduling problem and the low-level multi-agent problem of schedule execution.
Finally, we also conceive the case where centralisation is impossible at test
time and workers must learn how to cooperate in executing the tasks in an
environment with no schedule and only partial observability.
- Abstract(参考訳): 倉庫環境では、タスクが動的に現れる。
したがって、早期に労働力とマッチングするタスク管理システム(例えば、事前の週)は、必ずしも最適ではない。
また、そのようなシステムのアクション空間が急速に大きくなることは、従来のスケジューラにとって重要な問題である。
しかし強化学習は、長期的、しばしばリモートの目標に向けて順次決定する必要がある問題に対処するのに適している。
本研究では,動的倉庫マルチエージェント環境におけるタスクスケジューリングと,その部分的可観測性のみを有する分散エージェントによるそのようなスケジュールの実行という,階層構造を自ら提示する問題に着目する。
本稿では,高レベルスケジューリング問題と低レベルマルチエージェント問題の両方を解決するために,深層強化学習を提案する。
最後に、テスト時に集中化が不可能な場合も考え、作業者はスケジュールがなく、部分的な可観測性しか持たない環境でタスクの実行に協力する方法を学ぶ必要がある。
関連論文リスト
- Agent-Oriented Planning in Multi-Agent Systems [54.429028104022066]
本稿では,高速なタスク分解とアロケーションプロセスを活用するマルチエージェントシステムにおけるエージェント指向計画のための新しいフレームワークを提案する。
提案フレームワークにフィードバックループを組み込んで,そのような問題解決プロセスの有効性と堅牢性をさらに向上させる。
論文 参考訳(メタデータ) (2024-10-03T04:07:51Z) - Optimal task and motion planning and execution for human-robot
multi-agent systems in dynamic environments [54.39292848359306]
本稿では,タスクのシーケンシング,割り当て,実行を最適化するタスクと動作計画の組み合わせを提案する。
このフレームワークはタスクとアクションの分離に依存しており、アクションはシンボル的タスクの幾何学的実現の可能な1つの可能性である。
ロボットアームと人間の作業員がモザイクを組み立てる共同製造シナリオにおけるアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2023-03-27T01:50:45Z) - Learning Complex Teamwork Tasks Using a Given Sub-task Decomposition [11.998708550268978]
本稿では,タスクをよりシンプルなマルチエージェントサブタスクに分解する手法を提案する。
各サブタスクでは、チーム全体のサブセットが、サブタスク固有のポリシを取得するようにトレーニングされる。
サブチームはマージされ、ターゲットタスクに転送される。そこでは、そのポリシーは、より複雑なターゲットタスクを解決するために、まとめて微調整される。
論文 参考訳(メタデータ) (2023-02-09T21:24:56Z) - Fast Inference and Transfer of Compositional Task Structures for
Few-shot Task Generalization [101.72755769194677]
本稿では,タスクがサブタスクグラフによって特徴づけられる,数発の強化学習問題として定式化する。
我々のマルチタスクサブタスクグラフ推論器(MTSGI)は、トレーニングタスクから、まず、サブタスクグラフの観点から、一般的なハイレベルなタスク構造を推測する。
提案手法は,2次元グリッドワールドおよび複雑なWebナビゲーション領域において,タスクの共通基盤構造を学習し,活用し,未知のタスクへの適応を高速化する。
論文 参考訳(メタデータ) (2022-05-25T10:44:25Z) - Autonomous Open-Ended Learning of Tasks with Non-Stationary
Interdependencies [64.0476282000118]
固有のモチベーションは、目標間のトレーニング時間を適切に割り当てるタスクに依存しないシグナルを生成することが証明されている。
内在的に動機付けられたオープンエンドラーニングの分野におけるほとんどの研究は、目標が互いに独立しているシナリオに焦点を当てているが、相互依存タスクの自律的な獲得を研究するのはごくわずかである。
特に,タスク間の関係に関する情報をアーキテクチャのより高レベルなレベルで組み込むことの重要性を示す。
そして、自律的に取得したシーケンスを格納する新しい学習層を追加することで、前者を拡張する新しいシステムであるH-GRAILを紹介する。
論文 参考訳(メタデータ) (2022-05-16T10:43:01Z) - Reinforcement Learning for Location-Aware Scheduling [1.0660480034605238]
倉庫環境の様々な側面がパフォーマンスや実行の優先順位にどのように影響するかを示す。
位置認識型マルチエージェントシステムのための状態空間と動作空間のコンパクト表現を提案する。
また、特定の環境で訓練されたエージェントが、完全に見えない環境でパフォーマンスを維持する方法を示す。
論文 参考訳(メタデータ) (2022-03-07T15:51:00Z) - Evolving Hierarchical Memory-Prediction Machines in Multi-Task
Reinforcement Learning [4.030910640265943]
行動エージェントは、時間とともに様々な環境や目的にまたがって一般化されなければならない。
遺伝的プログラミングを用いて、制御文献から6つのユニークな環境で動作可能な、高度に一般化されたエージェントを進化させる。
進化するプログラムにおける創発的階層構造は、時間分解とメモリ上の問題環境の符号化を成功させるマルチタスクエージェントをもたらすことを示す。
論文 参考訳(メタデータ) (2021-06-23T21:34:32Z) - Bottom-up mechanism and improved contract net protocol for the dynamic
task planning of heterogeneous Earth observation resources [61.75759893720484]
地球観測資源は、災害救助、被害評価、関連する領域においてますます不可欠になりつつある。
観測要求の変更や悪天候の発生、資源の失敗など、予測できない多くの要因は、スケジュールされた観測計画が実行不可能になる可能性がある。
不均質な地球観測資源の動的タスク計画を容易にするため、ボトムアップ分散協調フレームワークと改良された契約網を提案する。
論文 参考訳(メタデータ) (2020-07-13T03:51:08Z) - Dynamic Multi-Robot Task Allocation under Uncertainty and Temporal
Constraints [52.58352707495122]
本稿では,不確実性およびマルチエージェント協調の下での逐次意思決定における重要な計算課題を分離するマルチロボット割当アルゴリズムを提案する。
都市におけるマルチアームコンベヤベルトピック・アンド・プレイスとマルチドローン配送ディスパッチの2つの異なる領域における広範囲なシミュレーション結果について検証を行った。
論文 参考訳(メタデータ) (2020-05-27T01:10:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。