論文の概要: Agent-Oriented Planning in Multi-Agent Systems
- arxiv url: http://arxiv.org/abs/2410.02189v1
- Date: Thu, 3 Oct 2024 04:07:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 08:15:54.209742
- Title: Agent-Oriented Planning in Multi-Agent Systems
- Title(参考訳): 多エージェントシステムにおけるエージェント指向計画
- Authors: Ao Li, Yuexiang Xie, Songze Li, Fugee Tsung, Bolin Ding, Yaliang Li,
- Abstract要約: 本稿では,高速なタスク分解とアロケーションプロセスを活用するマルチエージェントシステムにおけるエージェント指向計画のための新しいフレームワークを提案する。
提案フレームワークにフィードバックループを組み込んで,そのような問題解決プロセスの有効性と堅牢性をさらに向上させる。
- 参考スコア(独自算出の注目度): 54.429028104022066
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Through the collaboration of multiple agents possessing diverse expertise and tools, multi-agent systems achieve impressive progress in solving real-world problems. Given the user queries, the meta-agents, serving as the brain within these systems, are required to decompose the queries into multiple sub-tasks that can be allocated to suitable agents capable of solving them, so-called agent-oriented planning. In this study, we identify three critical design principles of agent-oriented planning, including solvability, completeness, and non-redundancy, to ensure that each sub-task is effectively resolved, leading to satisfactory responses to the original queries. These principles further inspire us to propose a novel framework for agent-oriented planning in multi-agent systems, leveraging a fast task decomposition and allocation process followed by an effective and efficient evaluation via a reward model. During the planning process, the meta-agent is also responsible for evaluating the performance of the expert agents, making timely adjustments to the sub-tasks and scheduling as necessary. Besides, we integrate a feedback loop into the proposed framework to further enhance the effectiveness and robustness of such a problem-solving process. Extensive experiments demonstrate the advancement of the proposed framework in solving real-world problems compared to both single-agent systems and existing planning strategies for multi-agent systems.
- Abstract(参考訳): 多様な専門知識とツールを持つ複数のエージェントのコラボレーションを通じて、マルチエージェントシステムは現実世界の問題を解決するための驚くべき進歩を達成する。
ユーザクエリを前提として、これらのシステム内の脳として機能するメタエージェントは、クエリを複数のサブタスクに分解する必要がある。
本研究では,解答性,完全性,非冗長性を含むエージェント指向計画の3つの重要な設計原則を特定し,各サブタスクが効果的に解決されることを確認し,元のクエリに対する満足な応答をもたらす。
これらの原理は、高速なタスク分解と割り当てプロセスを利用して、報酬モデルによる効果的かつ効率的な評価を行うマルチエージェントシステムにおけるエージェント指向計画のための新しいフレームワークを提案するきっかけとなった。
計画プロセス中、メタエージェントはエキスパートエージェントのパフォーマンスを評価し、サブタスクにタイムリーに調整し、必要に応じてスケジューリングする責任も負う。
さらに,提案フレームワークにフィードバックループを組み込んで,そのような問題解決プロセスの有効性と堅牢性をさらに向上させる。
大規模実験は,マルチエージェントシステムにおける単一エージェントシステムと既存の計画戦略の両方と比較して,現実世界の問題を解決するためのフレームワークの進歩を実証している。
関連論文リスト
- Agent-as-a-Judge: Evaluate Agents with Agents [61.33974108405561]
本稿ではエージェント・アズ・ア・ジャッジ(Agent-as-a-Judge)フレームワークを紹介し,エージェント・システムを用いてエージェント・システムの評価を行う。
これはLLM-as-a-Judgeフレームワークの有機的拡張であり、タスク解決プロセス全体の中間フィードバックを可能にするエージェント的特徴を取り入れている。
55のリアルな自動化AI開発タスクのベンチマークであるDevAIを紹介します。
論文 参考訳(メタデータ) (2024-10-14T17:57:02Z) - Ask-before-Plan: Proactive Language Agents for Real-World Planning [68.08024918064503]
プロアクティブエージェントプランニングでは、ユーザエージェントの会話とエージェント環境のインタラクションに基づいて、言語エージェントが明確化のニーズを予測する必要がある。
本稿では,明確化,実行,計画の3つのエージェントからなる新しいマルチエージェントフレームワーク,Clarification-Execution-Planning(textttCEP)を提案する。
論文 参考訳(メタデータ) (2024-06-18T14:07:28Z) - Adaptive In-conversation Team Building for Language Model Agents [33.03550687362213]
複数の大規模言語モデル(LLM)エージェントを活用することは、複雑なタスクに取り組む上で有望なアプローチであることが示されている。
私たちの新しい適応型チーム構築パラダイムは、Captain Agentという新しいエージェント設計を通じて実現された柔軟なソリューションを提供します。
6つの実世界のシナリオに対する包括的な評価は、Captain Agentが既存のマルチエージェントメソッドを大幅に上回っていることを示している。
論文 参考訳(メタデータ) (2024-05-29T18:08:37Z) - Devil's Advocate: Anticipatory Reflection for LLM Agents [53.897557605550325]
我々のアプローチは、LLMエージェントに対して、与えられたタスクを管理可能なサブタスクに分解するように促す。
イントロスペクティブ・イントロスペクティブ・イントロスペクティブ・イントロスペクティブ(introspective intervention)を3回実施する。
潜在的な障害の予測と、アクション実行前の代替策。
サブタスクの目的とのポストアクションアライメントと、計画実行における最大限の努力を保証するための改善によるバックトラック。
論文 参考訳(メタデータ) (2024-05-25T19:20:15Z) - A cooperative strategy for diagnosing the root causes of quality requirement violations in multiagent systems [4.710921988115686]
本稿では,マルチエージェントシステムにおける品質要件違反の根本原因を特定することに焦点を当てた協調戦略を提案する。
この戦略により、エージェントは互いに協力し合って、これらの違反がサービスプロバイダや関連するコンポーネント、あるいは通信インフラから生じるものかどうかを識別できます。
論文 参考訳(メタデータ) (2024-04-18T14:41:33Z) - Agents meet OKR: An Object and Key Results Driven Agent System with
Hierarchical Self-Collaboration and Self-Evaluation [25.308341461293857]
OKR-Agentは、タスク解決におけるLarge Language Models(LLM)の機能を強化するように設計されている。
我々のフレームワークには、階層オブジェクトとキー結果の生成とマルチレベル評価という、2つの新しいモジュールが含まれています。
論文 参考訳(メタデータ) (2023-11-28T06:16:30Z) - Learning Complex Teamwork Tasks Using a Given Sub-task Decomposition [11.998708550268978]
本稿では,タスクをよりシンプルなマルチエージェントサブタスクに分解する手法を提案する。
各サブタスクでは、チーム全体のサブセットが、サブタスク固有のポリシを取得するようにトレーニングされる。
サブチームはマージされ、ターゲットタスクに転送される。そこでは、そのポリシーは、より複雑なターゲットタスクを解決するために、まとめて微調整される。
論文 参考訳(メタデータ) (2023-02-09T21:24:56Z) - Multi-agent Deep Covering Skill Discovery [50.812414209206054]
本稿では,複数エージェントの結合状態空間の予測被覆時間を最小化し,マルチエージェントオプションを構築するマルチエージェントDeep Covering Option Discoveryを提案する。
また、MARLプロセスにマルチエージェントオプションを採用するための新しいフレームワークを提案する。
提案アルゴリズムは,アテンション機構とエージェントの相互作用を効果的に把握し,マルチエージェントオプションの同定に成功した。
論文 参考訳(メタデータ) (2022-10-07T00:40:59Z) - Dynamic Multi-Robot Task Allocation under Uncertainty and Temporal
Constraints [52.58352707495122]
本稿では,不確実性およびマルチエージェント協調の下での逐次意思決定における重要な計算課題を分離するマルチロボット割当アルゴリズムを提案する。
都市におけるマルチアームコンベヤベルトピック・アンド・プレイスとマルチドローン配送ディスパッチの2つの異なる領域における広範囲なシミュレーション結果について検証を行った。
論文 参考訳(メタデータ) (2020-05-27T01:10:41Z) - A Novel Multi-Agent System for Complex Scheduling Problems [2.294014185517203]
本稿では,様々な問題領域に適用可能なマルチエージェントシステムの概念と実装について述べる。
提案手法の有効性を示すため,NP-hardスケジューリング問題をシミュレートする。
本稿では,レイアウトの複雑さの低減,複雑なシステムの制御の改善,拡張性など,エージェントベースのアプローチの利点を強調した。
論文 参考訳(メタデータ) (2020-04-20T14:04:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。