Good quantum LDPC codes with linear time decoder from lossless expanders
- URL: http://arxiv.org/abs/2203.03581v1
- Date: Mon, 7 Mar 2022 18:30:45 GMT
- Title: Good quantum LDPC codes with linear time decoder from lossless expanders
- Authors: Ting-Chun Lin, Min-Hsiu Hsieh
- Abstract summary: Quantum low-density parity-check (qLDPC) codes are quantum stabilizer codes.
We study qLDPC codes constructed from balanced products and lossless expanders.
- Score: 14.823143667165382
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum low-density parity-check (qLDPC) codes are quantum stabilizer codes
where each stabilizer acts on a constant number of qubits and each qubit is
acted on by a constant number of stabilizers. We study qLDPC codes constructed
from balanced products and lossless expanders. We found that assuming the
existence of 2-sided lossless expander graphs with free group action, the
resulting qLDPC codes have constant rate, linear distance, and linear time
decoders.
Related papers
- Efficient and Universal Neural-Network Decoder for Stabilizer-Based Quantum Error Correction [44.698141103370546]
We introduce a universal decoder based on linear attention sequence modeling and graph neural network.
Our experiments demonstrate that this decoder outperforms specialized algorithms in both accuracy and speed.
arXiv Detail & Related papers (2025-02-27T10:56:53Z) - Erasure Decoding for Quantum LDPC Codes via Belief Propagation with Guided Decimation [7.185960422285947]
We show that guided decimation (BPGD) decoding of quantum LDPC codes offers competitive performance on quantum erasure channels.
BPGD is an effective general-purpose solution for erasure decoding across the quantum LDPC landscape.
arXiv Detail & Related papers (2024-11-12T20:45:43Z) - List Decodable Quantum LDPC Codes [49.2205789216734]
We give a construction of Quantum Low-Density Parity Check (QLDPC) codes with near-optimal rate-distance tradeoff.
We get efficiently list decodable QLDPC codes with unique decoders.
arXiv Detail & Related papers (2024-11-06T23:08:55Z) - Demonstrating real-time and low-latency quantum error correction with superconducting qubits [52.08698178354922]
We demonstrate low-latency feedback with a scalable FPGA decoder integrated into a superconducting quantum processor.
We observe logical error suppression as the number of decoding rounds is increased.
The decoder throughput and latency developed in this work, combined with continued device improvements, unlock the next generation of experiments.
arXiv Detail & Related papers (2024-10-07T17:07:18Z) - Effective Distance of Higher Dimensional HGPs and Weight-Reduced Quantum LDPC Codes [0.0]
We show that there exists single-ancilla syndrome extraction circuits that largely preserve the effective distance of the weight-reduced qLDPC codes.
As a corollary, our result shows that higher-dimensional hypergraph product codes have no troublesome hook errors when using any single-ancilla syndrome extraction circuit.
arXiv Detail & Related papers (2024-09-03T18:02:33Z) - Fault-Tolerant Quantum LDPC Encoders [0.0]
We propose fault-tolerant encoders for quantum low-density parity (LDPC) codes.
By grouping qubits within a quantum code over contiguous blocks, we show how preshared entanglement can be applied.
arXiv Detail & Related papers (2024-05-12T10:16:43Z) - A Joint Code and Belief Propagation Decoder Design for Quantum LDPC Codes [5.194602156761048]
We propose a novel joint code and decoder design for QLDPC codes.
Joint codes have a minimum distance of about the square root of the block length.
Results demonstrate outstanding decoding performance over depolarizing channels.
arXiv Detail & Related papers (2024-01-12T20:07:16Z) - Belief Propagation Decoding of Quantum LDPC Codes with Guided Decimation [55.8930142490617]
We propose a decoder for QLDPC codes based on BP guided decimation (BPGD)
BPGD significantly reduces the BP failure rate due to non-convergence.
arXiv Detail & Related papers (2023-12-18T05:58:07Z) - Quaternary Neural Belief Propagation Decoding of Quantum LDPC Codes with
Overcomplete Check Matrices [45.997444794696676]
Quantum low-density parity-check (QLDPC) codes are promising candidates for error correction in quantum computers.
One of the major challenges in implementing QLDPC codes in quantum computers is the lack of a universal decoder.
We first propose to decode QLDPC codes with a belief propagation (BP) decoder operating on overcomplete check matrices.
We extend the neural BP (NBP) decoder, which was originally studied for suboptimal binary BP decoding of QLPDC codes, to quaternary BP decoders.
arXiv Detail & Related papers (2023-08-16T08:24:06Z) - Neural Belief Propagation Decoding of Quantum LDPC Codes Using
Overcomplete Check Matrices [60.02503434201552]
We propose to decode QLDPC codes based on a check matrix with redundant rows, generated from linear combinations of the rows in the original check matrix.
This approach yields a significant improvement in decoding performance with the additional advantage of very low decoding latency.
arXiv Detail & Related papers (2022-12-20T13:41:27Z) - An efficient decoder for a linear distance quantum LDPC code [0.1657441317977376]
We present a linear time decoder for the recent quantumally good qLDPC codes.
Our decoder is an iterative algorithm which searches for corrections within constant-sized regions.
arXiv Detail & Related papers (2022-06-14T02:17:09Z) - Finding the disjointness of stabilizer codes is NP-complete [77.34726150561087]
We show that the problem of calculating the $c-disjointness, or even approximating it to within a constant multiplicative factor, is NP-complete.
We provide bounds on the disjointness for various code families, including the CSS codes,$d codes and hypergraph codes.
Our results indicate that finding fault-tolerant logical gates for generic quantum error-correcting codes is a computationally challenging task.
arXiv Detail & Related papers (2021-08-10T15:00:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.