論文の概要: Mammograms Classification: A Review
- arxiv url: http://arxiv.org/abs/2203.03618v1
- Date: Fri, 4 Mar 2022 19:22:35 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-09 14:19:22.344372
- Title: Mammograms Classification: A Review
- Title(参考訳): マンモグラム分類:概観
- Authors: Marawan Elbatel
- Abstract要約: マンモグラム画像はコンピュータ支援診断システムの開発に利用されてきた。
研究者たちは、人工知能が病気の早期発見に利用できることを証明した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: An advanced reliable low-cost form of screening method, Digital mammography
has been used as an effective imaging method for breast cancer detection. With
an increased focus on technologies to aid healthcare, Mammogram images have
been utilized in developing computer-aided diagnosis systems that will
potentially help in clinical diagnosis. Researchers have proved that artificial
intelligence with its emerging technologies can be used in the early detection
of the disease and improve radiologists' performance in assessing breast
cancer. In this paper, we review the methods developed for mammogram mass
classification in two categories. The first one is classifying manually
provided cropped region of interests (ROI) as either malignant or benign, and
the second one is the classification of automatically segmented ROIs as either
malignant or benign. We also provide an overview of datasets and evaluation
metrics used in the classification task. Finally, we compare and discuss the
deep learning approach to classical image processing and learning approach in
this domain.
- Abstract(参考訳): 乳がん検診に有効な画像診断法として,高信頼性低コスト検診法Digital Mammographyが用いられている。
医療支援技術への注目が高まり、マンモグラム画像は臨床診断に役立つ可能性のあるコンピュータ支援診断システムの開発に利用されてきた。
研究者たちは、この病気の早期発見や、乳癌の評価における放射線技師のパフォーマンス向上に人工知能が利用できることを証明している。
本稿では,マンモグラムの質量分類法を2つのカテゴリに分けて検討する。
1つ目は、手作業で提供された利害関係(ROI)を悪性または良性のいずれかに分類し、もう1つは自動的に分類されたROIを悪性または良性のいずれかに分類する。
また,分類タスクで使用されるデータセットと評価指標についても概説する。
最後に、この領域における古典的画像処理および学習アプローチとディープラーニングアプローチを比較し、議論する。
関連論文リスト
- BMAD: Benchmarks for Medical Anomaly Detection [51.22159321912891]
異常検出(AD)は、機械学習とコンピュータビジョンの基本的な研究課題である。
医用画像では、ADはまれな疾患や病態を示す可能性のある異常の検出と診断に特に重要である。
医用画像の異常検出方法を評価するための総合評価ベンチマークを導入する。
論文 参考訳(メタデータ) (2023-06-20T20:23:46Z) - Harmonizing Pathological and Normal Pixels for Pseudo-healthy Synthesis [68.5287824124996]
そこで本研究では,新しいタイプの識別器であるセグメンタを提案し,病変の正確な特定と擬似健康画像の視覚的品質の向上を図っている。
医用画像強調に生成画像を適用し,低コントラスト問題に対処するために拡張結果を利用する。
BraTSのT2モダリティに関する総合的な実験により、提案手法は最先端の手法よりも大幅に優れていることが示された。
論文 参考訳(メタデータ) (2022-03-29T08:41:17Z) - Open-Set Recognition of Breast Cancer Treatments [91.3247063132127]
オープンセット認識は、テストサンプルをトレーニングや"未知"から既知のクラスの1つに分類することで、分類タスクを一般化する
乳がん患者データに対して,画像データセットの最先端結果を実現するガウス混合変分オートエンコーダモデルを適用した。
より正確でロバストな分類結果が得られ,F1の平均値が24.5%上昇したばかりでなく,臨床環境への展開性の観点からも,オープンセット認識の再検討を行った。
論文 参考訳(メタデータ) (2022-01-09T04:35:55Z) - Unsupervised deep learning techniques for powdery mildew recognition
based on multispectral imaging [63.62764375279861]
本稿では,キュウリ葉の粉状ミドウを自動的に認識する深層学習手法を提案する。
マルチスペクトルイメージングデータに適用した教師なし深層学習技術に焦点をあてる。
本稿では, オートエンコーダアーキテクチャを用いて, 疾患検出のための2つの手法を提案する。
論文 参考訳(メタデータ) (2021-12-20T13:29:13Z) - DenseNet for Breast Tumor Classification in Mammographic Images [0.0]
本研究の目的は,マンモグラフィ画像における乳腺病変の自動検出,分画,分類のための深層畳み込みニューラルネットワーク手法を構築することである。
ディープラーニングに基づいて,選択と抽出を特徴とするmask-cnn(roialign)法を開発し,drknet architectureを用いて分類を行った。
論文 参考訳(メタデータ) (2021-01-24T03:30:59Z) - Using Machine Learning to Automate Mammogram Images Analysis [12.19801103274363]
X線マンモグラフィーによる乳がんの早期発見は死亡率を効果的に低下させたと考えられている。
マンモグラム画像を処理するコンピュータ支援自動マンモグラム解析システムを提案し, 正常または癌として自動的に識別する。
論文 参考訳(メタデータ) (2020-12-06T00:10:18Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
ディープニューラルネットワークを用いた臨床意思決定支援は、着実に関心が高まりつつあるトピックとなっている。
臨床医は、その根底にある意思決定プロセスが不透明で理解しにくいため、この技術の採用をためらうことが多い。
そこで我々は,より小さなデータセットであっても,分類器決定の高品質な可視化を生成するCycleGANアクティベーションに基づく,新たな意思決定手法を提案する。
論文 参考訳(メタデータ) (2020-10-09T14:39:27Z) - Deep Learning Based Computer-Aided Systems for Breast Cancer Imaging : A
Critical Review [0.0]
このレビューは、過去10年間に出版された文献(2010年1月、2020年1月)に基づいている。
分類過程における主な知見は,新しいDL-CAD法が乳癌に対する有用かつ効果的なスクリーニングツールであることである。
論文 参考訳(メタデータ) (2020-09-30T18:41:20Z) - Synthesizing lesions using contextual GANs improves breast cancer
classification on mammograms [0.4297070083645048]
本稿では, マンモグラムの病変を現実的に合成し, 除去するデータ拡張のための, GANモデルを提案する。
自己注意と半教師付き学習コンポーネントにより、U-netベースのアーキテクチャは高解像度(256x256px)の出力を生成することができる。
論文 参考訳(メタデータ) (2020-05-29T21:23:00Z) - Breast Cancer Histopathology Image Classification and Localization using
Multiple Instance Learning [2.4178424543973267]
診断のための顕微鏡組織像を解析するためのコンピュータ支援病理学は、診断のコストと遅延をもたらす可能性がある。
病理学における深層学習は、分類とローカライゼーションのタスクにおいて最先端のパフォーマンスを達成した過去10年間に注目されている。
本稿では,BreakHISとBACHの2つのデータセットの分類とローカライゼーション結果について述べる。
論文 参考訳(メタデータ) (2020-02-16T10:29:16Z) - Stan: Small tumor-aware network for breast ultrasound image segmentation [68.8204255655161]
本研究では,小腫瘍認識ネットワーク(Small tumor-Aware Network,STAN)と呼ばれる新しいディープラーニングアーキテクチャを提案する。
提案手法は, 乳腺腫瘍の分節化における最先端のアプローチよりも優れていた。
論文 参考訳(メタデータ) (2020-02-03T22:25:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。