論文の概要: Low-Loss Subspace Compression for Clean Gains against Multi-Agent
Backdoor Attacks
- arxiv url: http://arxiv.org/abs/2203.03692v1
- Date: Mon, 7 Mar 2022 20:30:44 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-09 16:08:14.800383
- Title: Low-Loss Subspace Compression for Clean Gains against Multi-Agent
Backdoor Attacks
- Title(参考訳): マルチエージェントバックドア攻撃に対するクリーンゲインに対する低損失サブスペース圧縮
- Authors: Siddhartha Datta, Nigel Shadbolt
- Abstract要約: 近年のマルチエージェント・バックドア・アタックの探索では、バックドア・インプットがランダムに分類されたバックドア・アタックに対する自然な防御であるバックファイリング・エフェクトが示された。
本稿では, 汚染ラベルの精度を最大化し, 毒性ラベルの最小化を図るマルチエージェントバックドアディフェンスの構築に焦点をあてる。
- 参考スコア(独自算出の注目度): 8.782809316491948
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recent exploration of the multi-agent backdoor attack demonstrated the
backfiring effect, a natural defense against backdoor attacks where backdoored
inputs are randomly classified. This yields a side-effect of low accuracy
w.r.t. clean labels, which motivates this paper's work on the construction of
multi-agent backdoor defenses that maximize accuracy w.r.t. clean labels and
minimize that of poison labels. Founded upon agent dynamics and low-loss
subspace construction, we contribute three defenses that yield improved
multi-agent backdoor robustness.
- Abstract(参考訳): マルチエージェントバックドア攻撃の最近の調査により、バックドア入力がランダムに分類されるバックドア攻撃に対する自然な防御であるバックフィリング効果が示された。
これにより、w.r.t.クリーンラベルの低精度化が副作用となり、w.r.t.クリーンラベルの精度を最大化し、毒ラベルを最小化するマルチエージェントバックドアディフェンスの構築が動機となる。
エージェントダイナミクスと低損失部分空間構築に基づいて構築され、マルチエージェントバックドアロバスト性を向上する3つの防御に寄与する。
関連論文リスト
- Efficient Backdoor Defense in Multimodal Contrastive Learning: A Token-Level Unlearning Method for Mitigating Threats [52.94388672185062]
本稿では,機械学習という概念を用いて,バックドアの脅威に対する効果的な防御機構を提案する。
これは、モデルがバックドアの脆弱性を迅速に学習するのを助けるために、小さな毒のサンプルを戦略的に作成することを必要とする。
バックドア・アンラーニング・プロセスでは,新しいトークン・ベースの非ラーニング・トレーニング・システムを提案する。
論文 参考訳(メタデータ) (2024-09-29T02:55:38Z) - PureDiffusion: Using Backdoor to Counter Backdoor in Generative Diffusion Models [5.957580737396457]
拡散モデル(DM)は、幅広い生成タスクにおいて最先端の能力を達成した高度なディープラーニングモデルである。
近年の研究では、バックドア攻撃に関する脆弱性が示されており、バックドアDMは、バックドアターゲットと呼ばれる指定結果を一貫して生成している。
DMに埋め込まれたバックドアトリガを反転させることで、バックドア攻撃を効率的に検出できる新しいバックドア防御フレームワークであるPureDiffusionを導入する。
論文 参考訳(メタデータ) (2024-09-20T23:19:26Z) - A Spatiotemporal Stealthy Backdoor Attack against Cooperative Multi-Agent Deep Reinforcement Learning [12.535344011523897]
協調型多エージェント深層強化学習(c-MADRL)は、バックドア攻撃の脅威にさらされている。
我々は,c-MADRLに対する新たなバックドア攻撃を提案し,単一のエージェントにのみバックドアを埋め込むことで,マルチエージェントチーム全体を攻撃する。
私たちのバックドア攻撃は高い攻撃成功率(91.6%)を達成でき、クリーンパフォーマンスのばらつきは低い(3.7%)。
論文 参考訳(メタデータ) (2024-09-12T06:17:37Z) - Mitigating Backdoor Attack by Injecting Proactive Defensive Backdoor [63.84477483795964]
データ中毒のバックドア攻撃は、機械学習モデルにとって深刻なセキュリティ上の脅威である。
本稿では,トレーニング中のバックドアディフェンスに着目し,データセットが有害になりうる場合でもクリーンなモデルをトレーニングすることを目的とした。
PDB(Proactive Defensive Backdoor)と呼ばれる新しい防衛手法を提案する。
論文 参考訳(メタデータ) (2024-05-25T07:52:26Z) - SEEP: Training Dynamics Grounds Latent Representation Search for Mitigating Backdoor Poisoning Attacks [53.28390057407576]
現代のNLPモデルは、様々なソースから引き出された公開データセットでしばしば訓練される。
データ中毒攻撃は、攻撃者が設計した方法でモデルの振る舞いを操作できる。
バックドア攻撃に伴うリスクを軽減するために、いくつかの戦略が提案されている。
論文 参考訳(メタデータ) (2024-05-19T14:50:09Z) - BadCLIP: Dual-Embedding Guided Backdoor Attack on Multimodal Contrastive
Learning [85.2564206440109]
本報告では,防衛後においてもバックドア攻撃が有効であり続けるという現実的なシナリオにおける脅威を明らかにする。
バックドア検出や細調整防御のモデル化に抵抗性のあるemphtoolnsアタックを導入する。
論文 参考訳(メタデータ) (2023-11-20T02:21:49Z) - From Shortcuts to Triggers: Backdoor Defense with Denoised PoE [51.287157951953226]
言語モデルは、しばしば多様なバックドア攻撃、特にデータ中毒の危険にさらされる。
既存のバックドア防御手法は主に明示的なトリガーによるバックドア攻撃に焦点を当てている。
我々は,様々なバックドア攻撃を防御するために,エンド・ツー・エンドアンサンブルに基づくバックドア防御フレームワークDPoEを提案する。
論文 参考訳(メタデータ) (2023-05-24T08:59:25Z) - Recover Triggered States: Protect Model Against Backdoor Attack in
Reinforcement Learning [23.94769537680776]
バックドア攻撃は、悪意のあるユーザーが環境を操作したり、トレーニングデータを破損させたりすることで、トレーニングされたエージェントにバックドアを挿入することができる。
本稿では,バックドア攻撃から被害者エージェントを効果的に保護する新しい手法であるリカバリトリガードステイト(RTS)手法を提案する。
論文 参考訳(メタデータ) (2023-04-01T08:00:32Z) - Backdoors Stuck At The Frontdoor: Multi-Agent Backdoor Attacks That
Backfire [8.782809316491948]
複数の攻撃者が同時に被害者モデルをバックドアしようとするマルチエージェントバックドア攻撃シナリオについて検討する。
エージェントが集団攻撃の成功率の低いゲームで一貫したバックファイリング現象が観察される。
その結果,実践環境におけるバックドア・ディフェンス研究の再評価の動機となった。
論文 参考訳(メタデータ) (2022-01-28T16:11:40Z) - BACKDOORL: Backdoor Attack against Competitive Reinforcement Learning [80.99426477001619]
バックドア攻撃を複数のエージェントを含むより複雑なRLシステムに移行する。
概念実証として、敵のエージェントが被害者エージェントのバックドアを独自のアクションでトリガーできることを実証します。
その結果, バックドアが作動すると, 有効でない場合と比較して, 被害者の勝利率は17%から37%に低下することがわかった。
論文 参考訳(メタデータ) (2021-05-02T23:47:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。