Self-restricting Noise and Exponential Decay in Quantum Dynamics
- URL: http://arxiv.org/abs/2203.03745v3
- Date: Tue, 4 Apr 2023 06:33:22 GMT
- Title: Self-restricting Noise and Exponential Decay in Quantum Dynamics
- Authors: Nicholas LaRacuente
- Abstract summary: We show that exponential decay re-appears for unital, finite-dimensional semigroups at finite time.
We observe this interplay numerically and its discrete analog experimentally on IBM Q systems.
- Score: 1.52292571922932
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: States of open quantum systems usually decay continuously under environmental
interactions. Quantum Markov semigroups model such processes in dissipative
environments. It is known that a finite-dimensional quantum Markov semigroup
with detailed balance induces exponential decay toward a subspace of invariant
or fully decayed states. In contrast, we analyze continuous processes that
combine coherent and stochastic processes, precluding detailed balance. First,
we find counterexamples to analogous decay bounds for these processes and prove
conditions under which they fail. Second, we prove that the relationship
between the strength of local noise applied to part of a larger system and
overall decay of the whole is non-monotonic. Noise can suppress interactions
that would spread it. Faster decay of a subsystem may thereby slow overall
decay. We observe this interplay numerically and its discrete analog
experimentally on IBM Q systems. Our main results explain and generalize the
phenomenon theoretically. Finally, we observe that in spite of its absence at
early times, exponential decay re-appears for unital, finite-dimensional
semigroups at finite time.
Related papers
- Efficiency of Dynamical Decoupling for (Almost) Any Spin-Boson Model [44.99833362998488]
We analytically study the dynamical decoupling of a two-level system coupled with a structured bosonic environment.
We find sufficient conditions under which dynamical decoupling works for such systems.
Our bounds reproduce the correct scaling in various relevant system parameters.
arXiv Detail & Related papers (2024-09-24T04:58:28Z) - Quantum correlations in the steady state of light-emitter ensembles from
perturbation theory [0.0]
In systems of light emitters subject to single-emitter or two-emitter driving, the steady state perturbed away from the U(1) limit exhibits spin squeezing.
Our main result is that in systems of light emitters subject to single-emitter or two-emitter driving, the steady state perturbed away from the U(1) limit generically exhibits spin squeezing.
arXiv Detail & Related papers (2024-02-26T18:50:30Z) - Real-time dynamics of false vacuum decay [49.1574468325115]
We investigate false vacuum decay of a relativistic scalar field in the metastable minimum of an asymmetric double-well potential.
We employ the non-perturbative framework of the two-particle irreducible (2PI) quantum effective action at next-to-leading order in a large-N expansion.
arXiv Detail & Related papers (2023-10-06T12:44:48Z) - Decay and revival dynamics of a quantum state embedded in regularly
spaced band of states [0.0]
The dynamics of a single quantum state embedded in one or several (quasi-)continua is one of the most studied phenomena in quantum mechanics.
In this work we investigate its discrete analogue and consider short and long time dynamics based on numerical and analytical solutions of the Schr"odinger equation.
arXiv Detail & Related papers (2023-06-05T08:30:47Z) - Indication of critical scaling in time during the relaxation of an open
quantum system [34.82692226532414]
Phase transitions correspond to the singular behavior of physical systems in response to continuous control parameters like temperature or external fields.
Near continuous phase transitions, associated with the divergence of a correlation length, universal power-law scaling behavior with critical exponents independent of microscopic system details is found.
arXiv Detail & Related papers (2022-08-10T05:59:14Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z) - Non-exponential decay in Floquet-Bloch bands [0.0]
Exponential decay laws describe systems ranging from unstable nuclei to fluorescent molecules.
We propose the use of Bose condensates in Floquet-Bloch bands as a probe of long-time non-exponential decay in single isolated emitters.
arXiv Detail & Related papers (2020-02-08T00:12:22Z) - Many-Body Dephasing in a Trapped-Ion Quantum Simulator [0.0]
How a closed interacting quantum many-body system relaxes and dephases as a function of time is a fundamental question in thermodynamic and statistical physics.
We analyse and observe the persistent temporal fluctuations after a quantum quench of a tunable long-range interacting transverse-field Ising Hamiltonian realized with a trapped-ion quantum simulator.
arXiv Detail & Related papers (2020-01-08T12:33:28Z) - Adiabatic quantum decoherence in many non-interacting subsystems induced
by the coupling with a common boson bath [0.0]
This work addresses quantum adiabatic decoherence of many-body spin systems coupled with a boson field in the framework of open quantum systems theory.
We generalize the traditional spin-boson model by considering a system-environment interaction Hamiltonian that represents a partition of non-interacting subsystems.
arXiv Detail & Related papers (2019-12-30T16:39:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.