論文の概要: Estimating the average causal effect of intervention in continuous
variables using machine learning
- arxiv url: http://arxiv.org/abs/2203.03916v2
- Date: Wed, 9 Mar 2022 16:48:34 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-10 13:12:55.285130
- Title: Estimating the average causal effect of intervention in continuous
variables using machine learning
- Title(参考訳): 機械学習を用いた連続変数の介入による平均因果効果の推定
- Authors: Yoshiaki Kitazawa
- Abstract要約: 平均因果効果/平均処理効果を推定するための最も広く議論されている手法は、離散二変数への介入である。
一方,データ生成モデルに依存しない連続変数のインターベンション手法は開発されていない。
本研究では,任意の生成モデルのデータに適用可能な連続変数の介入に対する平均因果効果を推定する手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The most widely discussed methods for estimating the Average Causal Effect /
Average Treatment Effect are those for intervention in discrete binary
variables whose value represents the intervention / non-intervention groups. On
the other hand, methods for intervening in continuous variables independent of
the data generating model has not been developed. In this study, we give a
method for estimating the average causal effect for intervention in continuous
variables that can be applied to data of any generating model as long as the
causal effect is identifiable. The proposing method is independent of machine
learning algorithms and preserves the identifiability of the data.
- Abstract(参考訳): 平均因果効果/平均治療効果を推定するための最も広く議論されている方法は、介入/非干渉群を表す値を持つ離散二変数への介入である。
一方,データ生成モデルに依存しない連続変数のインターベンション手法は開発されていない。
本研究では,任意の生成モデルのデータに適用可能な連続変数に対する介入に対する平均因果効果を,因果効果を識別できる限り推定する手法を提案する。
提案手法は機械学習アルゴリズムとは無関係であり、データの識別性を保持する。
関連論文リスト
- Generative Intervention Models for Causal Perturbation Modeling [80.72074987374141]
多くの応用において、システムのメカニズムが外部の摂動によって変更されるかは未定である。
本稿では、これらの摂動特徴を原子間干渉による分布にマッピングする方法を学習する生成的介入モデル(GIM)を提案する。
論文 参考訳(メタデータ) (2024-11-21T10:37:57Z) - Learning Mixtures of Unknown Causal Interventions [14.788930098406027]
構造方程式モデル(SEM)における干渉・観測データの混在化の課題について考察する。
本研究は, 混合液中の各成分を効率よく回収するために, 十分な多様性と特性を有する分布が得られるか, 軟らかいかにかかわらず, 干渉を施すことを実証する。
その結果、因果グラフは干渉的マルコフ等価クラスと同一視でき、ノイズが干渉的データの生成に影響を与えないシナリオと同様である。
論文 参考訳(メタデータ) (2024-10-31T21:25:11Z) - Identification of Average Causal Effects in Confounded Additive Noise Models [7.064432289838905]
結果に対する治療変数の任意のサブセットの平均因果効果(ACE)を推定するための新しいアプローチを提案する。
また,ノード数の多元対数に対する介入回数をさらに削減するランダム化アルゴリズムを提案する。
このことは、治療のどのサブセットの因果効果も、確立されたANMの結果を高い確率で推測するのに十分であることを示す。
論文 参考訳(メタデータ) (2024-07-13T21:46:57Z) - Causal Dynamic Variational Autoencoder for Counterfactual Regression in
Longitudinal Data [3.662229789022107]
時間とともに治療効果を推定することは、精密医療、疫学、経済、マーケティングなど多くの現実世界の応用において重要である。
我々は、観測されていないリスク要因、すなわち、結果の順序だけに影響を与える調整変数を仮定することで、異なる視点を取る。
我々は、時間変化効果と未観測の調整変数によって生じる課題に対処する。
論文 参考訳(メタデータ) (2023-10-16T16:32:35Z) - B-Learner: Quasi-Oracle Bounds on Heterogeneous Causal Effects Under
Hidden Confounding [51.74479522965712]
本稿では,B-Learnerと呼ばれるメタラーナーを提案する。
我々は、その推定が有効で、鋭く、効率的であることを証明し、既存の方法よりも一般的な条件下で構成推定器に対して準オーラル特性を持つことを示した。
論文 参考訳(メタデータ) (2023-04-20T18:07:19Z) - Disentangled Representation for Causal Mediation Analysis [25.114619307838602]
因果媒介分析(英: Causal mediation analysis)は、直接的および間接的な効果を明らかにするためにしばしば用いられる方法である。
深層学習はメディエーション分析において有望であるが、現在の手法では、治療、メディエーター、結果に同時に影響を及ぼす潜在的共同創設者のみを前提としている。
そこで本研究では,助成金の表現を3つのタイプに分けて,自然的直接効果,自然間接効果,および全効果を正確に推定する,ディスタングル・メディエーション分析変分自動エンコーダ(DMAVAE)を提案する。
論文 参考訳(メタデータ) (2023-02-19T23:37:17Z) - Zero-shot causal learning [64.9368337542558]
CaMLは因果メタラーニングフレームワークであり、各介入の効果をタスクとしてパーソナライズした予測を定式化する。
トレーニング時に存在しない新規介入のパーソナライズされた効果を予測することができることを示す。
論文 参考訳(メタデータ) (2023-01-28T20:14:11Z) - Scalable Intervention Target Estimation in Linear Models [52.60799340056917]
因果構造学習への現在のアプローチは、既知の介入目標を扱うか、仮説テストを使用して未知の介入目標を発見する。
本稿では、全ての介入対象を一貫して識別するスケーラブルで効率的なアルゴリズムを提案する。
提案アルゴリズムは、与えられた観測マルコフ同値クラスを介入マルコフ同値クラスに更新することも可能である。
論文 参考訳(メタデータ) (2021-11-15T03:16:56Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
本稿では,データ生成プロセスの根底にある因果構造を素早く識別する能動的介入ターゲット機構を提案する。
本手法は,ランダムな介入ターゲティングと比較して,要求される対話回数を大幅に削減する。
シミュレーションデータから実世界のデータまで,複数のベンチマークにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2021-09-06T13:10:37Z) - A Subsampling-Based Method for Causal Discovery on Discrete Data [18.35147325731821]
本研究では,原因発生方式とメカニズムの独立性をテストするためのサブサンプリング方式を提案する。
我々の手法は、離散データと分類データの両方で機能し、データ上の機能的モデルを含まないため、より柔軟なアプローチである。
論文 参考訳(メタデータ) (2021-08-31T17:11:58Z) - Efficient Causal Inference from Combined Observational and
Interventional Data through Causal Reductions [68.6505592770171]
因果効果を推定する際の主な課題の1つである。
そこで本研究では,任意の数の高次元潜入共創者を置き換える新たな因果還元法を提案する。
パラメータ化縮小モデルを観測データと介入データから共同で推定する学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-08T14:29:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。