論文の概要: Generative Intervention Models for Causal Perturbation Modeling
- arxiv url: http://arxiv.org/abs/2411.14003v1
- Date: Thu, 21 Nov 2024 10:37:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-22 15:20:26.905473
- Title: Generative Intervention Models for Causal Perturbation Modeling
- Title(参考訳): 因果摂動モデルのための生成的干渉モデル
- Authors: Nora Schneider, Lars Lorch, Niki Kilbertus, Bernhard Schölkopf, Andreas Krause,
- Abstract要約: 多くの応用において、システムのメカニズムが外部の摂動によって変更されるかは未定である。
本稿では、これらの摂動特徴を原子間干渉による分布にマッピングする方法を学習する生成的介入モデル(GIM)を提案する。
- 参考スコア(独自算出の注目度): 80.72074987374141
- License:
- Abstract: We consider the problem of predicting perturbation effects via causal models. In many applications, it is a priori unknown which mechanisms of a system are modified by an external perturbation, even though the features of the perturbation are available. For example, in genomics, some properties of a drug may be known, but not their causal effects on the regulatory pathways of cells. We propose a generative intervention model (GIM) that learns to map these perturbation features to distributions over atomic interventions in a jointly-estimated causal model. Contrary to prior approaches, this enables us to predict the distribution shifts of unseen perturbation features while gaining insights about their mechanistic effects in the underlying data-generating process. On synthetic data and scRNA-seq drug perturbation data, GIMs achieve robust out-of-distribution predictions on par with unstructured approaches, while effectively inferring the underlying perturbation mechanisms, often better than other causal inference methods.
- Abstract(参考訳): 本稿では,因果モデルによる摂動効果の予測問題について考察する。
多くの応用において、摂動の特徴が利用可能であるにもかかわらず、システムのメカニズムが外部の摂動によって変更されるかは未定である。
例えば、ゲノム学では、ある薬物のいくつかの性質は知られているが、その原因が細胞の調節経路に与える影響は分かっていない。
本稿では,これらの摂動特徴を原子間干渉の分布にマッピングする生成的介入モデル(GIM)を提案する。
従来の手法とは対照的に,データ生成過程におけるメカニズム的影響を把握しつつ,未知の摂動特性の分布変化を予測できる。
合成データとscRNA-seq薬物摂動データに基づいて、GIMは非構造的アプローチと同等に頑健なアウト・オブ・ディストリビューション予測を達成し、基盤となる摂動機構を効果的に推定し、しばしば他の因果推論法よりも優れている。
関連論文リスト
- Influence Functions for Scalable Data Attribution in Diffusion Models [52.92223039302037]
拡散モデルは、生成的モデリングに大きな進歩をもたらした。
しかし、彼らの普及はデータ属性と解釈可能性に関する課題を引き起こす。
本稿では,テキスト・インフルエンス・ファンクション・フレームワークを開発することにより,このような課題に対処することを目的とする。
論文 参考訳(メタデータ) (2024-10-17T17:59:02Z) - Bayesian Causal Inference with Gaussian Process Networks [1.7188280334580197]
本稿では,ガウス過程ネットワークモデルにおける仮説的介入の効果のベイズ推定の問題について考察する。
本稿では,ネットワーク全体の介入の効果をシミュレートし,下流変数に対する介入の効果を伝播させることにより,GPNに対する因果推論を行う方法について述べる。
両フレームワークを既知の因果グラフのケースを超えて拡張し,マルコフ連鎖モンテカルロ法による因果構造の不確実性を取り入れた。
論文 参考訳(メタデータ) (2024-02-01T14:39:59Z) - Identifiability Guarantees for Causal Disentanglement from Soft
Interventions [26.435199501882806]
因果解離は因果モデルを通して相互に関係する潜伏変数を用いてデータの表現を明らかにすることを目的としている。
本稿では,各介入が潜伏変数のメカニズムを変えることにより,未ペアの観測データと介入データが利用可能となるシナリオに焦点を当てる。
因果変数が完全に観測されると、忠実性の仮定の下で因果モデルを特定するために統計的に一貫したアルゴリズムが開発された。
論文 参考訳(メタデータ) (2023-07-12T15:39:39Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
本研究では, 因果表現学習, 潜伏因果変数を推定するタスク, およびそれらの変数の混合から因果関係を考察する。
我々のゴールは、根底にある真理潜入者とその因果グラフの両方を、介入データから解決不可能なあいまいさの集合まで識別することである。
論文 参考訳(メタデータ) (2023-06-01T10:51:58Z) - Causal Analysis for Robust Interpretability of Neural Networks [0.2519906683279152]
我々は、事前学習されたニューラルネットワークの因果効果を捉えるための頑健な介入に基づく手法を開発した。
分類タスクで訓練された視覚モデルに本手法を適用した。
論文 参考訳(メタデータ) (2023-05-15T18:37:24Z) - Modeling Causal Mechanisms with Diffusion Models for Interventional and Counterfactual Queries [10.818661865303518]
本稿では,観察的,介入的,反ファクト的クエリに因果的に十分な設定で回答する問題を考察する。
本稿では拡散型因果モデル (DCM) を導入し, 独自の潜伏符号化を生成する因果メカニズムを学習する。
我々の実証評価は、因果クエリに応答する既存の最先端手法よりも大幅に改善されたことを示す。
論文 参考訳(メタデータ) (2023-02-02T04:08:08Z) - Learning Generalized Gumbel-max Causal Mechanisms [31.64007831043909]
対物処理効果を推定する際のばらつきの最小化など,定量的な基準の下で最良となる因果メカニズムを選択することを論じる。
興味のある問合せの分布に反実効果のばらつきやその他の損失を最小化するように訓練できることが示される。
論文 参考訳(メタデータ) (2021-11-11T22:02:20Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
因果機構は構造因果モデルによって記述できる。
最先端の人工知能の大きな欠点の1つは、説明責任の欠如である。
論文 参考訳(メタデータ) (2021-09-06T14:52:58Z) - Efficient Causal Inference from Combined Observational and
Interventional Data through Causal Reductions [68.6505592770171]
因果効果を推定する際の主な課題の1つである。
そこで本研究では,任意の数の高次元潜入共創者を置き換える新たな因果還元法を提案する。
パラメータ化縮小モデルを観測データと介入データから共同で推定する学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-08T14:29:07Z) - Latent Causal Invariant Model [128.7508609492542]
現在の教師付き学習は、データ適合プロセス中に急激な相関を学習することができる。
因果予測を求める潜在因果不変モデル(LaCIM)を提案する。
論文 参考訳(メタデータ) (2020-11-04T10:00:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。