Cavity Quantum Electrodynamics Effects of Optically Cooled
Nitrogen-Vacancy Centers Coupled to a High Frequency Microwave Resonator
- URL: http://arxiv.org/abs/2203.04102v1
- Date: Tue, 8 Mar 2022 14:10:56 GMT
- Title: Cavity Quantum Electrodynamics Effects of Optically Cooled
Nitrogen-Vacancy Centers Coupled to a High Frequency Microwave Resonator
- Authors: Yuan Zhang, Qilong Wu, Hao Wu, Xun Yang, Shi-Lei Su, Chongxin Shan,
Klaus M{\o}lmer
- Abstract summary: cooled nitrogen-vacancy (NV) spins can be used to realize cavity quantum electrodynamics effects (C-QED) at room temperature.
We modify the setup used in a recent diamond maser experiment to realize better microwave mode cooling and the room-temperature CQED effects.
- Score: 14.55760561352593
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent experiments demonstrated the cooling of a microwave mode of a
high-quality dielectric resonator coupled to optically cooled nitrogen-vacancy
(NV) spins in diamond. Our recent theoretical study [arXiv:2110.10950] pointed
out the cooled NV spins can be used to realize cavity quantum electrodynamics
effects (C-QED) at room temperature. In this article, we propose to modify the
setup used in a recent diamond maser experiment [Nature 55, 493-496 (2018)],
which features a higher spin transition frequency, a lower spin-dephasing rate
and a stronger NV spins-resonator coupling, to realize better microwave mode
cooling and the room-temperature CQED effects. To describe more precisely the
optical spin cooling and the collective spin-resonator coupling, we extend the
standard Jaynes-Cumming model to account for the rich electronic and spin
levels of the NV centers. Our calculations show that for the proposed setup it
is possible to cool the microwave mode from $293$ K (room temperature) to $116$
K, which is about $72$ K lower than the previous records, and to study the
intriguing dynamics of the CQED effects under the weak-to-strong coupling
transition by varying the laser power. With simple modifications, our model can
be applied to, e.g., other solid-state spins or triplet spins of pentacene
molecules, and to investigate other effects, such as the operations of pulsed
and continuous-wave masing.
Related papers
- A spin-refrigerated cavity quantum electrodynamic sensor [1.6713959634020665]
Quantum sensors based on solid-state defects, in particular nitrogen-vacancy centers in diamond, enable precise measurement of magnetic fields, temperature, rotation, and electric fields.
We introduce a cavity quantum electrodynamic (cQED) hybrid system operating in the strong coupling regime, which enables high readout fidelity of an NV ensemble.
We demonstrate a broadband sensitivity of 580 fT/$sqrtmathrmHz$ around 15 kHz in ambient conditions.
arXiv Detail & Related papers (2024-04-16T14:56:50Z) - Dynamics of molecular rotors in bulk superfluid helium [68.8204255655161]
We report on the experimental study of the laser-induced rotation of helium dimers inside the superfluid $4mathrmHe$ bath at variable temperature.
The observed temperature dependence suggests a non-equilibrium evolution of the quantum bath, accompanied by the emission of the wave of second sound.
arXiv Detail & Related papers (2023-04-08T01:22:19Z) - Modeling temperature-dependent population dynamics in the excited state
of the nitrogen-vacancy center in diamond [0.0]
The nitrogen-vacancy center in diamond has a temperature range from near zero to over 600 K.
Despite its prominence, the NV center's photo-physics is incompletely understood.
We present a rate model able to describe the cross-over from the low-temperature to the high-temperature regime.
arXiv Detail & Related papers (2023-04-05T15:42:38Z) - Probing dynamics of a two-dimensional dipolar spin ensemble using single
qubit sensor [62.997667081978825]
We experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal.
We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder.
Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles.
arXiv Detail & Related papers (2022-07-21T18:00:17Z) - Measuring the magnon-photon coupling in shaped ferromagnets: tuning of
the resonance frequency [50.591267188664666]
cavity photons and ferromagnetic spins excitations can exchange information coherently in hybrid architectures.
Speed enhancement is usually achieved by optimizing the geometry of the electromagnetic cavity.
We show that the geometry of the ferromagnet plays also an important role, by setting the fundamental frequency of the magnonic resonator.
arXiv Detail & Related papers (2022-07-08T11:28:31Z) - Cavity Quantum Electrodynamics Effects with Nitrogen Vacancy Center
Spins in Diamond and Microwave Resonators at Room Temperature [4.620106182077669]
Cavity quantum electrodynamics (C-QED) effects have been demonstrated with nitrogen vacancy center spins in diamond in microwave resonators at cryogenic temperature.
We show the possibility to realize strong collective coupling and the resulting C-QED effects with ensembles of spins at room temperature.
The resulting population of Dicke states with higher symmetry implies strong coupling with currently available high-quality resonators.
arXiv Detail & Related papers (2021-10-21T07:56:17Z) - Demonstration of electron-nuclear decoupling at a spin clock transition [54.088309058031705]
Clock transitions protect molecular spin qubits from magnetic noise.
linear coupling to nuclear degrees of freedom causes a modulation and decay of electronic coherence.
An absence of quantum information leakage to the nuclear bath provides opportunities to characterize other decoherence sources.
arXiv Detail & Related papers (2021-06-09T16:23:47Z) - Fast coherent control of an NV- spin ensemble using a KTaO3 dielectric
resonator at cryogenic temperatures [0.0]
Microwave delivery to samples in a cryogenic environment can pose experimental challenges such as restricting optical access, space constraints and heat generation.
Here we show fast and coherent control of a negatively charged nitrogen vacancy spin ensemble by taking advantage of the high permittivity of a KTaO3 dielectric resonator at cryogenic temperatures.
arXiv Detail & Related papers (2021-05-14T12:05:22Z) - Bench-top Cooling of a Microwave Mode using an Optically Pumped Spin
Refrigerator [1.8922128824659967]
We experimentally remove thermal photons from a microwave mode at 1.45 GHz.
The noise temperature of the microwave mode dropped to $50+18_-32$ K.
We identify the system as a narrow-band yet extremely convenient platform for realizing low-noise detectors, quantum memory and quantum-enhanced machines.
arXiv Detail & Related papers (2021-04-01T06:07:37Z) - Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear
qudit with an electronic ancilla [50.002949299918136]
We show that [VO(TPP)] (vanadyl tetraphenylporphyrinate) is a promising system suitable to implement quantum computation algorithms.
It embeds an electronic spin 1/2 coupled through hyperfine interaction to a nuclear spin 7/2, both characterized by remarkable coherence.
arXiv Detail & Related papers (2021-03-15T21:38:41Z) - Open-cavity in closed-cycle cryostat as a quantum optics platform [47.50219326456544]
We present a fiber-based open Fabry-P'erot cavity in a closed-cycle cryostat exhibiting ultra-high mechanical stability.
This set of results manifests open-cavity in a closed-cycle cryostat as a versatile and powerful platform for low-temperature cavity QED experiments.
arXiv Detail & Related papers (2021-03-09T18:41:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.