Modeling temperature-dependent population dynamics in the excited state
of the nitrogen-vacancy center in diamond
- URL: http://arxiv.org/abs/2304.02521v2
- Date: Thu, 31 Aug 2023 14:08:29 GMT
- Title: Modeling temperature-dependent population dynamics in the excited state
of the nitrogen-vacancy center in diamond
- Authors: Stefan Ernst, Patrick J. Scheidegger, Simon Diesch, Christian L. Degen
- Abstract summary: The nitrogen-vacancy center in diamond has a temperature range from near zero to over 600 K.
Despite its prominence, the NV center's photo-physics is incompletely understood.
We present a rate model able to describe the cross-over from the low-temperature to the high-temperature regime.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The nitrogen-vacancy (NV) center in diamond is well known in quantum
metrology and quantum information for its favorable spin and optical
properties, which span a wide temperature range from near zero to over 600 K.
Despite its prominence, the NV center's photo-physics is incompletely
understood, especially at intermediate temperatures between 10-100 K where
phonons become activated. In this work, we present a rate model able to
describe the cross-over from the low-temperature to the high-temperature
regime. Key to the model is a phonon-driven hopping between the two orbital
branches in the excited state (ES), which accelerates spin relaxation via an
interplay with the ES spin precession. We extend our model to include magnetic
and electric fields as well as crystal strain, allowing us to simulate the
population dynamics over a wide range of experimental conditions. Our model
recovers existing descriptions for the low- and high-temperature limits, and
successfully explains various sets of literature data. Further, the model
allows us to predict experimental observables, in particular the
photoluminescence (PL) emission rate, spin contrast, and spin initialization
fidelity relevant for quantum applications. Lastly, our model allows probing
the electron-phonon interaction of the NV center and reveals a gap between the
current understanding and recent experimental findings.
Related papers
- Phonon-Induced Decoherence in Color-Center Qubits [1.6280801141284873]
Electron spin states of solid-state defects are a leading quantum-memory candidate for quantum communications and computing.
We derive the time dynamics of the density operator of an electron-spin qubit.
We use our model to corroborate experimentally-measured decoherence rates.
arXiv Detail & Related papers (2023-05-08T21:11:24Z) - Temperature dependence of photoluminescence intensity and spin contrast
in nitrogen-vacancy centers [0.0]
We report on measurements of the photoluminescence (PL) properties of single nitrogen-vacancy (NV) centers in diamond at temperatures between 4-300 K.
We observe a strong reduction of the PL intensity and spin contrast between ca. 10-100 K that recovers to high levels below and above.
We develop a comprehensive model based on spin mixing and orbital hopping in the electronic excited state that quantitatively explains the observations.
arXiv Detail & Related papers (2023-01-12T15:39:33Z) - Slow semiclassical dynamics of a two-dimensional Hubbard model in
disorder-free potentials [77.34726150561087]
We show that introduction of harmonic and spin-dependent linear potentials sufficiently validates fTWA for longer times.
In particular, we focus on a finite two-dimensional system and show that at intermediate linear potential strength, the addition of a harmonic potential and spin dependence of the tilt, results in subdiffusive dynamics.
arXiv Detail & Related papers (2022-10-03T16:51:25Z) - Photoinduced prethermal order parameter dynamics in the two-dimensional
large-$N$ Hubbard-Heisenberg model [77.34726150561087]
We study the microscopic dynamics of competing ordered phases in a two-dimensional correlated electron model.
We simulate the light-induced transition between two competing phases.
arXiv Detail & Related papers (2022-05-13T13:13:31Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Cavity Quantum Electrodynamics Effects of Optically Cooled
Nitrogen-Vacancy Centers Coupled to a High Frequency Microwave Resonator [14.55760561352593]
cooled nitrogen-vacancy (NV) spins can be used to realize cavity quantum electrodynamics effects (C-QED) at room temperature.
We modify the setup used in a recent diamond maser experiment to realize better microwave mode cooling and the room-temperature CQED effects.
arXiv Detail & Related papers (2022-03-08T14:10:56Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Qubit-photon bound states in topological waveguides with long-range
hoppings [62.997667081978825]
Quantum emitters interacting with photonic band-gap materials lead to the appearance of qubit-photon bound states.
We study the features of the qubit-photon bound states when the emitters couple to the bulk modes in the different phases.
We consider the coupling of emitters to the edge modes appearing in the different topological phases.
arXiv Detail & Related papers (2021-05-26T10:57:21Z) - Cavity QED with Quantum Gases: New Paradigms in Many-Body Physics [0.0]
We review the recent developments and the current status in the field of quantum-gas cavity QED.
Composite quantum-gas--cavity systems offer the opportunity to implement, simulate, and experimentally test fundamental solid-state Hamiltonians.
arXiv Detail & Related papers (2021-02-08T19:00:03Z) - Ab initio Ultrafast Spin Dynamics in Solids [0.7874708385247353]
We present a first-principles real-time density-matrix approach based on Lindblad dynamics to simulate ultrafast spin dynamics for general solid-state systems.
We find that the electron-electron scattering is negligible at room temperature but becomes dominant at low temperatures for spin relaxation in n-type GaAs.
arXiv Detail & Related papers (2020-12-16T02:49:47Z) - Optically pumped spin polarization as a probe of many-body
thermalization [50.591267188664666]
We study the spin diffusion dynamics of 13C in diamond, which we dynamically polarize at room temperature via optical spin pumping of engineered color centers.
We find good thermal contact throughout the nuclear spin bath, virtually independent of the hyperfine coupling strength.
Our results open intriguing opportunities to study the onset of thermalization in a system by controlling the internal interactions within the bath.
arXiv Detail & Related papers (2020-05-01T23:16:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.