論文の概要: Art-Attack: Black-Box Adversarial Attack via Evolutionary Art
- arxiv url: http://arxiv.org/abs/2203.04405v1
- Date: Mon, 7 Mar 2022 12:54:09 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-10 16:58:50.270097
- Title: Art-Attack: Black-Box Adversarial Attack via Evolutionary Art
- Title(参考訳): art-attack: 進化的アートによるブラックボックス攻撃
- Authors: Phoenix Williams, Ke Li
- Abstract要約: ディープニューラルネットワーク(DNN)は多くのタスクで最先端のパフォーマンスを達成したが、敵の例によって生成された攻撃に対して極端な脆弱性を示している。
本稿では, 進化芸術の概念を用いて, 敵対的事例を生成することによって, 勾配のない攻撃を提案する。
- 参考スコア(独自算出の注目度): 5.760976250387322
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks (DNNs) have achieved state-of-the-art performance in
many tasks but have shown extreme vulnerabilities to attacks generated by
adversarial examples. Many works go with a white-box attack that assumes total
access to the targeted model including its architecture and gradients. A more
realistic assumption is the black-box scenario where an attacker only has
access to the targeted model by querying some input and observing its predicted
class probabilities. Different from most prevalent black-box attacks that make
use of substitute models or gradient estimation, this paper proposes a
gradient-free attack by using a concept of evolutionary art to generate
adversarial examples that iteratively evolves a set of overlapping transparent
shapes. To evaluate the effectiveness of our proposed method, we attack three
state-of-the-art image classification models trained on the CIFAR-10 dataset in
a targeted manner. We conduct a parameter study outlining the impact the number
and type of shapes have on the proposed attack's performance. In comparison to
state-of-the-art black-box attacks, our attack is more effective at generating
adversarial examples and achieves a higher attack success rate on all three
baseline models.
- Abstract(参考訳): ディープニューラルネットワーク(DNN)は多くのタスクで最先端のパフォーマンスを達成したが、敵の例によって生成された攻撃に対して極端な脆弱性を示している。
多くの作業は、そのアーキテクチャや勾配を含むターゲットモデルへの完全なアクセスを前提としたホワイトボックス攻撃を伴う。
より現実的な仮定はブラックボックスのシナリオであり、攻撃者は入力をクエリして予測されたクラスの確率を観察することでターゲットモデルにのみアクセスすることができる。
代用モデルや勾配推定を用いた一般的なブラックボックス攻撃とは違って, 進化的手法を用いて, 重複する透明な形状の集合を反復的に進化させる逆例を生成することにより, 勾配のない攻撃を提案する。
提案手法の有効性を評価するため,CIFAR-10データセットで訓練された3つの最先端画像分類モデルを標的として攻撃する。
提案する攻撃性能に及ぼす形状の数と種類の影響についてパラメータスタディを行った。
最先端のブラックボックス攻撃と比較して,本攻撃は攻撃例の生成に効果的であり,3つのベースラインモデルにおいて高い攻撃成功率を達成している。
関連論文リスト
- Understanding the Robustness of Randomized Feature Defense Against
Query-Based Adversarial Attacks [23.010308600769545]
ディープニューラルネットワークは、元の画像に近いサンプルを見つける敵の例に弱いが、モデルを誤分類させる可能性がある。
モデル中間層における隠れた特徴にランダムノイズを付加することにより,ブラックボックス攻撃に対する簡易かつ軽量な防御法を提案する。
本手法は,スコアベースと決定ベースの両方のブラックボックス攻撃に対するモデルのレジリエンスを効果的に向上させる。
論文 参考訳(メタデータ) (2023-10-01T03:53:23Z) - Ensemble-based Blackbox Attacks on Dense Prediction [16.267479602370543]
慎重に設計されたアンサンブルは、多くの犠牲者モデルに対して効果的な攻撃を発生させることができることを示す。
特に,個々のモデルに対する重み付けの正規化が,攻撃の成功に重要な役割を担っていることを示す。
提案手法は同時に複数のブラックボックス検出とセグメンテーションモデルを騙すことができる単一摂動を生成することができる。
論文 参考訳(メタデータ) (2023-03-25T00:08:03Z) - Towards Lightweight Black-Box Attacks against Deep Neural Networks [70.9865892636123]
ブラックボックス攻撃は、いくつかのテストサンプルしか利用できない実用的な攻撃を引き起こす可能性があると我々は主張する。
いくつかのサンプルが必要なので、これらの攻撃を軽量なブラックボックス攻撃と呼ぶ。
近似誤差を軽減するために,Error TransFormer (ETF) を提案する。
論文 参考訳(メタデータ) (2022-09-29T14:43:03Z) - Attackar: Attack of the Evolutionary Adversary [0.0]
本稿では、進化的、スコアベース、ブラックボックス攻撃であるtextitAttackarを紹介する。
アタッカーは、勾配のない最適化問題に使用できる新しい目的関数に基づいている。
以上の結果から,精度とクエリ効率の両面で,Attackarの優れた性能を示す。
論文 参考訳(メタデータ) (2022-08-17T13:57:23Z) - Meta Gradient Adversarial Attack [64.5070788261061]
本稿では,MGAA(Metaversa Gradient Adrial Attack)と呼ばれる新しいアーキテクチャを提案する。
具体的には、モデル動物園から複数のモデルをランダムにサンプリングし、異なるタスクを構成するとともに、各タスクにおけるホワイトボックス攻撃とブラックボックス攻撃を反復的にシミュレートする。
ブラックボックス攻撃における勾配方向とブラックボックス攻撃の差を狭めることにより、ブラックボックス設定における逆例の転送性を向上させることができる。
論文 参考訳(メタデータ) (2021-08-09T17:44:19Z) - Improving Query Efficiency of Black-box Adversarial Attack [75.71530208862319]
ニューラルプロセスに基づくブラックボックス対逆攻撃(NP-Attack)を提案する。
NP-Attackはブラックボックス設定でクエリ数を大幅に削減できる。
論文 参考訳(メタデータ) (2020-09-24T06:22:56Z) - Two Sides of the Same Coin: White-box and Black-box Attacks for Transfer
Learning [60.784641458579124]
ホワイトボックスFGSM攻撃によるモデルロバスト性を効果的に向上することを示す。
また,移動学習モデルに対するブラックボックス攻撃手法を提案する。
ホワイトボックス攻撃とブラックボックス攻撃の双方の効果を系統的に評価するために,ソースモデルからターゲットモデルへの変換可能性の評価手法を提案する。
論文 参考訳(メタデータ) (2020-08-25T15:04:32Z) - Orthogonal Deep Models As Defense Against Black-Box Attacks [71.23669614195195]
攻撃者が標的モデルに類似したモデルを用いて攻撃を発生させるブラックボックス設定における深層モデル固有の弱点について検討する。
本稿では,深部モデルの内部表現を他のモデルに直交させる新しい勾配正規化手法を提案する。
様々な大規模モデルにおいて,本手法の有効性を検証する。
論文 参考訳(メタデータ) (2020-06-26T08:29:05Z) - Spanning Attack: Reinforce Black-box Attacks with Unlabeled Data [96.92837098305898]
Black-box攻撃は、機械学習モデルのインプット・アウトプットペアをクエリすることで、敵の摂動を発生させることを目的としている。
ブラックボックス攻撃はしばしば、入力空間の高次元性のためにクエリ非効率性の問題に悩まされる。
本研究では,低次元部分空間における逆摂動を,補助的なラベルのないデータセットに分散させることで抑制するスパンニング攻撃と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2020-05-11T05:57:15Z) - Using an ensemble color space model to tackle adversarial examples [22.732023268348787]
このような攻撃を防御する3段階の手法を提案する。
まず,統計的手法を用いて画像の識別を行う。
第二に、同じモデルに複数の色空間を採用することは、これらの敵対的攻撃と戦うのに役立ちます。
論文 参考訳(メタデータ) (2020-03-10T21:20:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。