論文の概要: Attackar: Attack of the Evolutionary Adversary
- arxiv url: http://arxiv.org/abs/2208.08297v1
- Date: Wed, 17 Aug 2022 13:57:23 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-18 12:17:15.635483
- Title: Attackar: Attack of the Evolutionary Adversary
- Title(参考訳): attackar: 進化的敵の攻撃
- Authors: Raz Lapid, Zvika Haramaty, Moshe Sipper
- Abstract要約: 本稿では、進化的、スコアベース、ブラックボックス攻撃であるtextitAttackarを紹介する。
アタッカーは、勾配のない最適化問題に使用できる新しい目的関数に基づいている。
以上の結果から,精度とクエリ効率の両面で,Attackarの優れた性能を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks (DNNs) are sensitive to adversarial data in a variety of
scenarios, including the black-box scenario, where the attacker is only allowed
to query the trained model and receive an output. Existing black-box methods
for creating adversarial instances are costly, often using gradient estimation
or training a replacement network. This paper introduces \textit{Attackar}, an
evolutionary, score-based, black-box attack. Attackar is based on a novel
objective function that can be used in gradient-free optimization problems. The
attack only requires access to the output logits of the classifier and is thus
not affected by gradient masking. No additional information is needed,
rendering our method more suitable to real-life situations. We test its
performance with three different state-of-the-art models -- Inception-v3,
ResNet-50, and VGG-16-BN -- against three benchmark datasets: MNIST, CIFAR10
and ImageNet. Furthermore, we evaluate Attackar's performance on
non-differential transformation defenses and state-of-the-art robust models.
Our results demonstrate the superior performance of Attackar, both in terms of
accuracy score and query efficiency.
- Abstract(参考訳): ディープニューラルネットワーク(DNN)は、ブラックボックスシナリオなど、さまざまなシナリオにおける敵データに敏感である。
敵インスタンスを作成する既存のブラックボックスメソッドはコストがかかり、しばしば勾配推定や置換ネットワークのトレーニングを使用する。
本稿では,進化的,スコアベース,ブラックボックス攻撃である \textit{attackar} を紹介する。
attackarは、勾配のない最適化問題で使用できる新しい客観的関数に基づいている。
この攻撃は分類器の出力ロジットへのアクセスのみを必要とするため、勾配マスキングの影響を受けない。
追加の情報は不要であり、実際の状況にもっと適している。
MNIST、CIFAR10、ImageNetの3つのベンチマークデータセットに対して、Inception-v3、ResNet-50、VGG-16-BNの3つの異なる最先端モデルでパフォーマンスをテストする。
さらに,非微分変換防御および最先端ロバストモデルにおけるアタッカーの性能を評価する。
以上の結果から,精度とクエリ効率の両面で,Attackarの優れた性能を示す。
関連論文リスト
- Hard Label Black Box Node Injection Attack on Graph Neural Networks [7.176182084359572]
グラフニューラルネットワークにおける非ターゲット型ハードラベルブラックボックスノードインジェクション攻撃を提案する。
我々の攻撃は、既存のエッジ摂動攻撃に基づいており、ノード注入攻撃を定式化するために最適化プロセスを制限する。
本研究では,3つのデータセットを用いて攻撃性能を評価する。
論文 参考訳(メタデータ) (2023-11-22T09:02:04Z) - Defense Against Model Extraction Attacks on Recommender Systems [53.127820987326295]
本稿では、モデル抽出攻撃に対するリコメンデータシステムに対する防御のために、グラディエントベースのランキング最適化(GRO)を導入する。
GROは、攻撃者の代理モデルの損失を最大化しながら、保護対象モデルの損失を最小限にすることを目的としている。
その結果,モデル抽出攻撃に対するGROの防御効果は良好であった。
論文 参考訳(メタデータ) (2023-10-25T03:30:42Z) - Microbial Genetic Algorithm-based Black-box Attack against Interpretable
Deep Learning Systems [16.13790238416691]
ホワイトボックス環境では、解釈可能なディープラーニングシステム(IDLS)が悪意のある操作に対して脆弱であることが示されている。
本稿では,IDLSに対するクエリ効率の高いScoreベースのブラックボックス攻撃QuScoreを提案する。
論文 参考訳(メタデータ) (2023-07-13T00:08:52Z) - Can Adversarial Examples Be Parsed to Reveal Victim Model Information? [62.814751479749695]
本研究では,データ固有の敵インスタンスから,データに依存しない被害者モデル(VM)情報を推測できるかどうかを問う。
我々は,135件の被害者モデルから生成された7種類の攻撃に対して,敵攻撃のデータセットを収集する。
単純な教師付きモデル解析ネットワーク(MPN)は、見えない敵攻撃からVM属性を推測できることを示す。
論文 参考訳(メタデータ) (2023-03-13T21:21:49Z) - Query Efficient Cross-Dataset Transferable Black-Box Attack on Action
Recognition [99.29804193431823]
ブラックボックスの敵攻撃は、行動認識システムに現実的な脅威をもたらす。
本稿では,摂動を発生させることにより,これらの欠点に対処する新たな行動認識攻撃を提案する。
提案手法は,最先端のクエリベースおよび転送ベース攻撃と比較して,8%,12%の偽装率を達成する。
論文 参考訳(メタデータ) (2022-11-23T17:47:49Z) - How to Robustify Black-Box ML Models? A Zeroth-Order Optimization
Perspective [74.47093382436823]
入力クエリと出力フィードバックだけでブラックボックスモデルを堅牢化する方法?
我々は,ブラックボックスモデルに適用可能な防御操作の一般的な概念を提案し,それを復号化スムーシング(DS)のレンズを通して設計する。
我々は,ZO-AE-DSが既存のベースラインよりも精度,堅牢性,クエリの複雑さを向上できることを実証的に示す。
論文 参考訳(メタデータ) (2022-03-27T03:23:32Z) - Art-Attack: Black-Box Adversarial Attack via Evolutionary Art [5.760976250387322]
ディープニューラルネットワーク(DNN)は多くのタスクで最先端のパフォーマンスを達成したが、敵の例によって生成された攻撃に対して極端な脆弱性を示している。
本稿では, 進化芸術の概念を用いて, 敵対的事例を生成することによって, 勾配のない攻撃を提案する。
論文 参考訳(メタデータ) (2022-03-07T12:54:09Z) - Detect and Defense Against Adversarial Examples in Deep Learning using
Natural Scene Statistics and Adaptive Denoising [12.378017309516965]
本稿では,DNN を敵のサンプルから守るためのフレームワークを提案する。
この検出器は、自然の景観統計を利用してAEを検出することを目的としている。
提案手法は最先端の防御技術より優れている。
論文 参考訳(メタデータ) (2021-07-12T23:45:44Z) - Targeted Attack against Deep Neural Networks via Flipping Limited Weight
Bits [55.740716446995805]
我々は,悪質な目的で展開段階におけるモデルパラメータを修飾する新しい攻撃パラダイムについて検討する。
私たちのゴールは、特定のサンプルをサンプル修正なしでターゲットクラスに誤分類することです。
整数プログラミングにおける最新の手法を利用することで、このBIP問題を連続最適化問題として等価に再構成する。
論文 参考訳(メタデータ) (2021-02-21T03:13:27Z) - Improving Query Efficiency of Black-box Adversarial Attack [75.71530208862319]
ニューラルプロセスに基づくブラックボックス対逆攻撃(NP-Attack)を提案する。
NP-Attackはブラックボックス設定でクエリ数を大幅に削減できる。
論文 参考訳(メタデータ) (2020-09-24T06:22:56Z) - Luring of transferable adversarial perturbations in the black-box
paradigm [0.0]
我々は、ブラックボックス転送攻撃に対するモデルの堅牢性を改善するための新しいアプローチを提案する。
除去可能な追加ニューラルネットワークが対象モデルに含まれており、テクスチャリング効果を誘導するように設計されている。
提案手法は,対象モデルの予測にのみアクセス可能であり,ラベル付きデータセットを必要としない。
論文 参考訳(メタデータ) (2020-04-10T06:48:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。