Data-driven detector signal characterization with constrained bottleneck
autoencoders
- URL: http://arxiv.org/abs/2203.04604v2
- Date: Thu, 10 Mar 2022 09:25:11 GMT
- Title: Data-driven detector signal characterization with constrained bottleneck
autoencoders
- Authors: C\'esar Jes\'us-Valls, Thorsten Lux and Federico S\'anchez
- Abstract summary: deep learning in the form of constrained bottleneck autoencoders can be used to learn the underlying unknown detector response model directly from data.
The trained algorithm can be used simultaneously to perform estimations on the physical parameters of the model, simulate the detector response with high fidelity and to denoise detector signals.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A common technique in high energy physics is to characterize the response of
a detector by means of models tunned to data which build parametric maps from
the physical parameters of the system to the expected signal of the detector.
When the underlying model is unknown it is difficult to apply this method, and
often, simplifying assumptions are made introducing modeling errors. In this
article, using a waveform toy model we present how deep learning in the form of
constrained bottleneck autoencoders can be used to learn the underlying unknown
detector response model directly from data. The results show that excellent
performance results can be achieved even when the signals are significantly
affected by random noise. The trained algorithm can be used simultaneously to
perform estimations on the physical parameters of the model, simulate the
detector response with high fidelity and to denoise detector signals.
Related papers
- Counterfactual Explanation for Auto-Encoder Based Time-Series Anomaly Detection [0.3199881502576702]
Auto-Encoders exhibit inherent opaqueness in their decision-making processes, hindering their practical implementation at scale.
In this work, we employ a feature selector to select features and counterfactual explanations to give a context to the model output.
Our experimental findings illustrate that our proposed counterfactual approach can offer meaningful and valuable insights into the model decision-making process.
arXiv Detail & Related papers (2025-01-03T19:30:11Z) - Residual ANODE [0.0]
We present R-ANODE, a new method for data-driven, model-agnostic resonant anomaly detection.
The key to R-ANODE is to enhance the inductive bias of the anomaly detection task by fitting a normalizing flow directly to the small and unknown signal component.
We show that the method works equally well whether the unknown signal fraction is learned or fixed, and is even robust to signal fraction misspecification.
arXiv Detail & Related papers (2023-12-18T19:00:03Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Anomaly Detection with Ensemble of Encoder and Decoder [2.8199078343161266]
Anomaly detection in power grids aims to detect and discriminate anomalies caused by cyber attacks against the power system.
We propose a novel anomaly detection method by modeling the data distribution of normal samples via multiple encoders and decoders.
Experiment results on network intrusion and power system datasets demonstrate the effectiveness of our proposed method.
arXiv Detail & Related papers (2023-03-11T15:49:29Z) - A Robust and Explainable Data-Driven Anomaly Detection Approach For
Power Electronics [56.86150790999639]
We present two anomaly detection and classification approaches, namely the Matrix Profile algorithm and anomaly transformer.
The Matrix Profile algorithm is shown to be well suited as a generalizable approach for detecting real-time anomalies in streaming time-series data.
A series of custom filters is created and added to the detector to tune its sensitivity, recall, and detection accuracy.
arXiv Detail & Related papers (2022-09-23T06:09:35Z) - Decision Forest Based EMG Signal Classification with Low Volume Dataset
Augmented with Random Variance Gaussian Noise [51.76329821186873]
We produce a model that can classify six different hand gestures with a limited number of samples that generalizes well to a wider audience.
We appeal to a set of more elementary methods such as the use of random bounds on a signal, but desire to show the power these methods can carry in an online setting.
arXiv Detail & Related papers (2022-06-29T23:22:18Z) - Closing the sim-to-real gap in guided wave damage detection with
adversarial training of variational auto-encoders [0.0]
We focus on the primary task of damage detection, where signal processing techniques are commonly employed.
We train an ensemble of variational autoencoders only on simulation data with a wave physics-guided adversarial component.
We compare our scheme with existing deep learning detection schemes and observe superior performance on experimental data.
arXiv Detail & Related papers (2022-01-26T17:36:11Z) - DriPP: Driven Point Processes to Model Stimuli Induced Patterns in M/EEG
Signals [62.997667081978825]
We develop a novel statistical point process model-called driven temporal point processes (DriPP)
We derive a fast and principled expectation-maximization (EM) algorithm to estimate the parameters of this model.
Results on standard MEG datasets demonstrate that our methodology reveals event-related neural responses.
arXiv Detail & Related papers (2021-12-08T13:07:21Z) - A Novel Anomaly Detection Algorithm for Hybrid Production Systems based
on Deep Learning and Timed Automata [73.38551379469533]
DAD:DeepAnomalyDetection is a new approach for automatic model learning and anomaly detection in hybrid production systems.
It combines deep learning and timed automata for creating behavioral model from observations.
The algorithm has been applied to few data sets including two from real systems and has shown promising results.
arXiv Detail & Related papers (2020-10-29T08:27:43Z) - Data-Driven Symbol Detection via Model-Based Machine Learning [117.58188185409904]
We review a data-driven framework to symbol detection design which combines machine learning (ML) and model-based algorithms.
In this hybrid approach, well-known channel-model-based algorithms are augmented with ML-based algorithms to remove their channel-model-dependence.
Our results demonstrate that these techniques can yield near-optimal performance of model-based algorithms without knowing the exact channel input-output statistical relationship.
arXiv Detail & Related papers (2020-02-14T06:58:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.