Object-Based Visual Camera Pose Estimation From Ellipsoidal Model and
3D-Aware Ellipse Prediction
- URL: http://arxiv.org/abs/2203.04613v1
- Date: Wed, 9 Mar 2022 10:00:52 GMT
- Title: Object-Based Visual Camera Pose Estimation From Ellipsoidal Model and
3D-Aware Ellipse Prediction
- Authors: Matthieu Zins, Gilles Simon, Marie-Odile Berger
- Abstract summary: We propose a method for initial camera pose estimation from just a single image.
It exploits the ability of deep learning techniques to reliably detect objects regardless of viewing conditions.
Experiments prove that the accuracy of the computed pose significantly increases thanks to our method.
- Score: 2.016317500787292
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we propose a method for initial camera pose estimation from
just a single image which is robust to viewing conditions and does not require
a detailed model of the scene. This method meets the growing need of easy
deployment of robotics or augmented reality applications in any environments,
especially those for which no accurate 3D model nor huge amount of ground truth
data are available. It exploits the ability of deep learning techniques to
reliably detect objects regardless of viewing conditions. Previous works have
also shown that abstracting the geometry of a scene of objects by an ellipsoid
cloud allows to compute the camera pose accurately enough for various
application needs. Though promising, these approaches use the ellipses fitted
to the detection bounding boxes as an approximation of the imaged objects. In
this paper, we go one step further and propose a learning-based method which
detects improved elliptic approximations of objects which are coherent with the
3D ellipsoids in terms of perspective projection. Experiments prove that the
accuracy of the computed pose significantly increases thanks to our method.
This is achieved with very little effort in terms of training data acquisition
- a few hundred calibrated images of which only three need manual object
annotation. Code and models are released at
https://gitlab.inria.fr/tangram/3d-aware-ellipses-for-visual-localization
Related papers
- Unsupervised Learning of Category-Level 3D Pose from Object-Centric Videos [15.532504015622159]
Category-level 3D pose estimation is a fundamentally important problem in computer vision and robotics.
We tackle the problem of learning to estimate the category-level 3D pose only from casually taken object-centric videos.
arXiv Detail & Related papers (2024-07-05T09:43:05Z) - LocaliseBot: Multi-view 3D object localisation with differentiable
rendering for robot grasping [9.690844449175948]
We focus on object pose estimation.
Our approach relies on three pieces of information: multiple views of the object, the camera's parameters at those viewpoints, and 3D CAD models of objects.
We show that the estimated object pose results in 99.65% grasp accuracy with the ground truth grasp candidates.
arXiv Detail & Related papers (2023-11-14T14:27:53Z) - FrozenRecon: Pose-free 3D Scene Reconstruction with Frozen Depth Models [67.96827539201071]
We propose a novel test-time optimization approach for 3D scene reconstruction.
Our method achieves state-of-the-art cross-dataset reconstruction on five zero-shot testing datasets.
arXiv Detail & Related papers (2023-08-10T17:55:02Z) - ShapeShift: Superquadric-based Object Pose Estimation for Robotic
Grasping [85.38689479346276]
Current techniques heavily rely on a reference 3D object, limiting their generalizability and making it expensive to expand to new object categories.
This paper proposes ShapeShift, a superquadric-based framework for object pose estimation that predicts the object's pose relative to a primitive shape which is fitted to the object.
arXiv Detail & Related papers (2023-04-10T20:55:41Z) - NOPE: Novel Object Pose Estimation from a Single Image [67.11073133072527]
We propose an approach that takes a single image of a new object as input and predicts the relative pose of this object in new images without prior knowledge of the object's 3D model.
We achieve this by training a model to directly predict discriminative embeddings for viewpoints surrounding the object.
This prediction is done using a simple U-Net architecture with attention and conditioned on the desired pose, which yields extremely fast inference.
arXiv Detail & Related papers (2023-03-23T18:55:43Z) - Unseen Object 6D Pose Estimation: A Benchmark and Baselines [62.8809734237213]
We propose a new task that enables and facilitates algorithms to estimate the 6D pose estimation of novel objects during testing.
We collect a dataset with both real and synthetic images and up to 48 unseen objects in the test set.
By training an end-to-end 3D correspondences network, our method finds corresponding points between an unseen object and a partial view RGBD image accurately and efficiently.
arXiv Detail & Related papers (2022-06-23T16:29:53Z) - Learning Stereopsis from Geometric Synthesis for 6D Object Pose
Estimation [11.999630902627864]
Current monocular-based 6D object pose estimation methods generally achieve less competitive results than RGBD-based methods.
This paper proposes a 3D geometric volume based pose estimation method with a short baseline two-view setting.
Experiments show that our method outperforms state-of-the-art monocular-based methods, and is robust in different objects and scenes.
arXiv Detail & Related papers (2021-09-25T02:55:05Z) - 3D-Aware Ellipse Prediction for Object-Based Camera Pose Estimation [3.103806775802078]
We propose a method for coarse camera pose computation which is robust to viewing conditions.
It exploits the ability of deep learning techniques to reliably detect objects regardless of viewing conditions.
arXiv Detail & Related papers (2021-05-24T18:40:18Z) - Back to the Feature: Learning Robust Camera Localization from Pixels to
Pose [114.89389528198738]
We introduce PixLoc, a scene-agnostic neural network that estimates an accurate 6-DoF pose from an image and a 3D model.
The system can localize in large environments given coarse pose priors but also improve the accuracy of sparse feature matching.
arXiv Detail & Related papers (2021-03-16T17:40:12Z) - 3D Object Detection and Pose Estimation of Unseen Objects in Color
Images with Local Surface Embeddings [35.769234123059086]
We present an approach for detecting and estimating the 3D poses of objects in images that requires only an untextured CAD model.
Our approach combines Deep Learning and 3D geometry: It relies on an embedding of local 3D geometry to match the CAD models to the input images.
We show that we can use Mask-RCNN in a class-agnostic way to detect the new objects without retraining and thus drastically limit the number of possible correspondences.
arXiv Detail & Related papers (2020-10-08T15:57:06Z) - Shape and Viewpoint without Keypoints [63.26977130704171]
We present a learning framework that learns to recover the 3D shape, pose and texture from a single image.
We trained on an image collection without any ground truth 3D shape, multi-view, camera viewpoints or keypoint supervision.
We obtain state-of-the-art camera prediction results and show that we can learn to predict diverse shapes and textures across objects.
arXiv Detail & Related papers (2020-07-21T17:58:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.