Language Model-driven Negative Sampling
- URL: http://arxiv.org/abs/2203.04703v1
- Date: Wed, 9 Mar 2022 13:27:47 GMT
- Title: Language Model-driven Negative Sampling
- Authors: Mirza Mohtashim Alam, Md Rashad Al Hasan Rony, Semab Ali, Jens
Lehmann, Sahar Vahdati
- Abstract summary: Knowledge Graph Embeddings (KGEs) encode the entities and relations of a knowledge graph (KG) into a vector space with a purpose of representation learning and reasoning for an ultimate downstream task (i.e., link prediction, question answering)
Since KGEs follow closed-world assumption and assume all the present facts in KGs to be positive (correct), they also require negative samples as a counterpart for learning process for truthfulness test of existing triples.
We propose an approach for generating negative sampling considering the existing rich textual knowledge in KGs.
- Score: 8.299192665823542
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Knowledge Graph Embeddings (KGEs) encode the entities and relations of a
knowledge graph (KG) into a vector space with a purpose of representation
learning and reasoning for an ultimate downstream task (i.e., link prediction,
question answering). Since KGEs follow closed-world assumption and assume all
the present facts in KGs to be positive (correct), they also require negative
samples as a counterpart for learning process for truthfulness test of existing
triples. Therefore, there are several approaches for creating negative samples
from the existing positive ones through a randomized distribution. This choice
of generating negative sampling affects the performance of the embedding models
as well as their generalization. In this paper, we propose an approach for
generating negative sampling considering the existing rich textual knowledge in
KGs. %The proposed approach is leveraged to cluster other relevant
representations of the entities inside a KG. Particularly, a pre-trained
Language Model (LM) is utilized to obtain the contextual representation of
symbolic entities. Our approach is then capable of generating more meaningful
negative samples in comparison to other state of the art methods. Our
comprehensive evaluations demonstrate the effectiveness of the proposed
approach across several benchmark datasets for like prediction task. In
addition, we show cased our the functionality of our approach on a clustering
task where other methods fall short.
Related papers
- Entity Aware Negative Sampling with Auxiliary Loss of False Negative
Prediction for Knowledge Graph Embedding [0.0]
We propose a novel method called Entity Aware Negative Sampling (EANS)
EANS is able to sample negative entities resemble to positive one by adopting Gaussian distribution to the aligned entity index space.
The proposed method can generate high-quality negative samples regardless of negative sample size and effectively mitigate the influence of false negative samples.
arXiv Detail & Related papers (2022-10-12T14:27:51Z) - Prototypical Graph Contrastive Learning [141.30842113683775]
We propose a Prototypical Graph Contrastive Learning (PGCL) approach to mitigate the critical sampling bias issue.
Specifically, PGCL models the underlying semantic structure of the graph data via clustering semantically similar graphs into the same group, and simultaneously encourages the clustering consistency for different augmentations of the same graph.
For a query, PGCL further reweights its negative samples based on the distance between their prototypes (cluster centroids) and the query prototype.
arXiv Detail & Related papers (2021-06-17T16:45:31Z) - Rethinking InfoNCE: How Many Negative Samples Do You Need? [54.146208195806636]
We study how many negative samples are optimal for InfoNCE in different scenarios via a semi-quantitative theoretical framework.
We estimate the optimal negative sampling ratio using the $K$ value that maximizes the training effectiveness function.
arXiv Detail & Related papers (2021-05-27T08:38:29Z) - Doubly Contrastive Deep Clustering [135.7001508427597]
We present a novel Doubly Contrastive Deep Clustering (DCDC) framework, which constructs contrastive loss over both sample and class views.
Specifically, for the sample view, we set the class distribution of the original sample and its augmented version as positive sample pairs.
For the class view, we build the positive and negative pairs from the sample distribution of the class.
In this way, two contrastive losses successfully constrain the clustering results of mini-batch samples in both sample and class level.
arXiv Detail & Related papers (2021-03-09T15:15:32Z) - Explaining and Improving Model Behavior with k Nearest Neighbor
Representations [107.24850861390196]
We propose using k nearest neighbor representations to identify training examples responsible for a model's predictions.
We show that kNN representations are effective at uncovering learned spurious associations.
Our results indicate that the kNN approach makes the finetuned model more robust to adversarial inputs.
arXiv Detail & Related papers (2020-10-18T16:55:25Z) - Conditional Negative Sampling for Contrastive Learning of Visual
Representations [19.136685699971864]
We show that choosing difficult negatives, or those more similar to the current instance, can yield stronger representations.
We introduce a family of mutual information estimators that sample negatives conditionally -- in a "ring" around each positive.
We prove that these estimators lower-bound mutual information, with higher bias but lower variance than NCE.
arXiv Detail & Related papers (2020-10-05T14:17:32Z) - Structure Aware Negative Sampling in Knowledge Graphs [18.885368822313254]
A crucial aspect of contrastive learning approaches is the choice of corruption distribution that generates hard negative samples.
We propose Structure Aware Negative Sampling (SANS), an inexpensive negative sampling strategy that utilizes the rich graph structure by selecting negative samples from a node's k-hop neighborhood.
arXiv Detail & Related papers (2020-09-23T19:57:00Z) - Understanding Negative Sampling in Graph Representation Learning [87.35038268508414]
We show that negative sampling is as important as positive sampling in determining the optimization objective and the resulted variance.
We propose Metropolis-Hastings (MCNS) to approximate the positive distribution with self-contrast approximation and accelerate negative sampling by Metropolis-Hastings.
We evaluate our method on 5 datasets that cover extensive downstream graph learning tasks, including link prediction, node classification and personalized recommendation.
arXiv Detail & Related papers (2020-05-20T06:25:21Z) - Reinforced Negative Sampling over Knowledge Graph for Recommendation [106.07209348727564]
We develop a new negative sampling model, Knowledge Graph Policy Network (kgPolicy), which works as a reinforcement learning agent to explore high-quality negatives.
kgPolicy navigates from the target positive interaction, adaptively receives knowledge-aware negative signals, and ultimately yields a potential negative item to train the recommender.
arXiv Detail & Related papers (2020-03-12T12:44:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.