論文の概要: SIERRA: A Modular Framework for Research Automation
- arxiv url: http://arxiv.org/abs/2203.04748v1
- Date: Thu, 3 Mar 2022 23:45:46 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-13 13:57:48.852107
- Title: SIERRA: A Modular Framework for Research Automation
- Title(参考訳): SIERRA: 研究自動化のためのモジュールフレームワーク
- Authors: John Harwell, London Lowmanstone, Maria Gini
- Abstract要約: 本稿では,研究の加速と成果向上のための新しいフレームワークであるSIERRAを紹介する。
SIERRAは、実験用の独立変数を素早く指定し、実験的な入力を生成し、実験を自動的に実行し、結果を処理してグラフやビデオなどの成果物を生成する。
個々の研究者のニーズに対して、簡単にカスタマイズと自動化の拡張を可能にする、深くモジュール化されたアプローチを採用している。
- 参考スコア(独自算出の注目度): 5.220940151628734
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modern intelligent systems researchers employ the scientific method: they
form hypotheses about system behavior, and then run experiments using one or
more independent variables to test their hypotheses. We present SIERRA, a novel
framework structured around that idea for accelerating research developments
and improving reproducibility of results. SIERRA makes it easy to quickly
specify the independent variable(s) for an experiment, generate experimental
inputs, automatically run the experiment, and process the results to generate
deliverables such as graphs and videos. SIERRA provides reproducible automation
independent of the execution environment (HPC hardware, real robots, etc.) and
targeted platform (arbitrary simulator or real robots), enabling exact
experiment replication (up to the limit of the execution environment and
platform). It employs a deeply modular approach that allows easy customization
and extension of automation for the needs of individual researchers, thereby
eliminating manual experiment configuration and result processing via
throw-away scripts.
- Abstract(参考訳): 現代のインテリジェントシステム研究者は科学的手法を用いて、システム行動に関する仮説を作成し、その仮説をテストするために1つ以上の独立した変数を用いて実験を行う。
本稿では,研究の加速と成果の再現性向上のための新しい枠組みであるSIERRAを紹介する。
SIERRAは、実験用の独立変数を素早く指定し、実験的な入力を生成し、実験を自動的に実行し、結果を処理してグラフやビデオなどの成果物を生成する。
sierraは、実行環境(hpcハードウェア、実ロボットなど)とターゲットプラットフォーム(軌道シミュレータまたは実ロボット)とは独立して再現可能な自動化を提供し、正確な実験レプリケーション(実行環境とプラットフォームの限界まで)を可能にする。
これは深くモジュール化されたアプローチを採用しており、個々の研究者のニーズに対する自動化のカスタマイズと拡張を容易にし、手動の実験構成や結果処理をスローアウトスクリプトを通じて排除する。
関連論文リスト
- MLR-Copilot: Autonomous Machine Learning Research based on Large Language Models Agents [10.86017322488788]
大規模言語モデルを用いた自律型機械学習研究(MLR-Copilot)を提案する。
大規模言語モデル(LLM)エージェントを用いた研究アイデアの自動生成と実装を通じて、機械学習研究の生産性を向上させるように設計されている。
我々は,5つの機械学習研究課題に関するフレームワークを評価し,研究の進展とイノベーションを促進するためのフレームワークの可能性を示す実験結果を示した。
論文 参考訳(メタデータ) (2024-08-26T05:55:48Z) - Automatic benchmarking of large multimodal models via iterative experiment programming [71.78089106671581]
本稿では,LMMの自動ベンチマークのための最初のフレームワークであるAPExを紹介する。
自然言語で表現された研究の質問に対して、APExは大きな言語モデル(LLM)と事前定義されたツールのライブラリを活用して、手元にあるモデルの一連の実験を生成する。
調査の現在の状況に基づいて、APExはどの実験を行うか、結果が結論を引き出すのに十分かどうかを選択する。
論文 参考訳(メタデータ) (2024-06-18T06:43:46Z) - MLXP: A Framework for Conducting Replicable Experiments in Python [63.37350735954699]
MLXPはPythonをベースとした,オープンソースの,シンプルで,軽量な実験管理ツールである。
実験プロセスを最小限のオーバーヘッドで合理化し、高いレベルの実践的オーバーヘッドを確保します。
論文 参考訳(メタデータ) (2024-02-21T14:22:20Z) - A Backend Platform for Supporting the Reproducibility of Computational
Experiments [2.1485350418225244]
同じフレームワークやコード、データソース、プログラミング言語、依存関係などを使って、同じ環境を再現することは困難です。
本研究では,実験の共有,構成,パッケージング,実行を可能にする統合開発環境を提案する。
これらの実験の20(80%)を再現し,その成果を最小限の努力で得られた。
論文 参考訳(メタデータ) (2023-06-29T10:29:11Z) - PyExperimenter: Easily distribute experiments and track results [63.871474825689134]
PyExperimenterは、アルゴリズムの実験的な研究結果のセットアップ、ドキュメンテーション、実行、およびその後の評価を容易にするツールである。
人工知能の分野で研究者が使用することを意図しているが、それらに限定されていない。
論文 参考訳(メタデータ) (2023-01-16T10:43:02Z) - SIERRA: A Modular Framework for Research Automation and Reproducibility [6.1678491628787455]
本稿では,研究の加速と成果向上のための新しいフレームワークであるSIERRAを紹介する。
SIERRAは、独立変数上のクエリから実行可能な実験を生成するプロセスを自動化することで研究を加速する。
個々の研究者のニーズに応じてカスタマイズと拡張が容易なモジュラーアーキテクチャを採用している。
論文 参考訳(メタデータ) (2022-08-16T15:36:34Z) - Learning Discrete Energy-based Models via Auxiliary-variable Local
Exploration [130.89746032163106]
離散構造データに対する条件付きおよび非条件付きEMMを学習するための新しいアルゴリズムであるALOEを提案する。
エネルギー関数とサンプリング器は、新しい変分型電力繰り返しにより効率よく訓練できることを示す。
本稿では、ソフトウェアテストのためのエネルギーモデルガイド付ファジィザについて、libfuzzerのようなよく設計されたファジィエンジンに匹敵する性能を実現する。
論文 参考訳(メタデータ) (2020-11-10T19:31:29Z) - Integrated Benchmarking and Design for Reproducible and Accessible
Evaluation of Robotic Agents [61.36681529571202]
本稿では,開発とベンチマークを統合した再現性ロボット研究の新しい概念について述べる。
このセットアップの中心的なコンポーネントの1つはDuckietown Autolabであり、これは比較的低コストで再現可能な標準化されたセットアップである。
本研究では,インフラを用いて実施した実験の再現性を解析し,ロボットのハードウェアや遠隔実験室間でのばらつきが低いことを示す。
論文 参考訳(メタデータ) (2020-09-09T15:31:29Z) - RoboTHOR: An Open Simulation-to-Real Embodied AI Platform [56.50243383294621]
インタラクティブで具体化された視覚AIの研究を民主化するためにRoboTHORを導入する。
シミュレーションで訓練されたモデルの性能は,シミュレーションと慎重に構築された物理アナログの両方で試験される場合,大きな差があることが示される。
論文 参考訳(メタデータ) (2020-04-14T20:52:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。