DriftGAN: Using historical data for Unsupervised Recurring Drift Detection
- URL: http://arxiv.org/abs/2407.06543v1
- Date: Tue, 9 Jul 2024 04:38:44 GMT
- Title: DriftGAN: Using historical data for Unsupervised Recurring Drift Detection
- Authors: Christofer Fellicious, Sahib Julka, Lorenz Wendlinger, Michael Granitzer,
- Abstract summary: In real-world applications, input data distributions are rarely static over a period of time, a phenomenon known as concept drift.
Most concept drift detection methods work on detecting concept drifts and signalling the requirement to retrain the model.
We present an unsupervised method based on Generative Adversarial Networks(GAN) to detect concept drifts and identify whether a specific concept drift occurred in the past.
- Score: 0.6358693097475243
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In real-world applications, input data distributions are rarely static over a period of time, a phenomenon known as concept drift. Such concept drifts degrade the model's prediction performance, and therefore we require methods to overcome these issues. The initial step is to identify concept drifts and have a training method in place to recover the model's performance. Most concept drift detection methods work on detecting concept drifts and signalling the requirement to retrain the model. However, in real-world cases, there could be concept drifts that recur over a period of time. In this paper, we present an unsupervised method based on Generative Adversarial Networks(GAN) to detect concept drifts and identify whether a specific concept drift occurred in the past. Our method reduces the time and data the model requires to get up to speed for recurring drifts. Our key results indicate that our proposed model can outperform the current state-of-the-art models in most datasets. We also test our method on a real-world use case from astrophysics, where we detect the bow shock and magnetopause crossings with better results than the existing methods in the domain.
Related papers
- Online Drift Detection with Maximum Concept Discrepancy [13.48123472458282]
We propose MCD-DD, a novel concept drift detection method based on maximum concept discrepancy.
Our method can adaptively identify varying forms of concept drift by contrastive learning of concept embeddings.
arXiv Detail & Related papers (2024-07-07T13:57:50Z) - Self-Supervised Class-Agnostic Motion Prediction with Spatial and Temporal Consistency Regularizations [53.797896854533384]
Class-agnostic motion prediction methods directly predict the motion of the entire point cloud.
While most existing methods rely on fully-supervised learning, the manual labeling of point cloud data is laborious and time-consuming.
We introduce three simple spatial and temporal regularization losses, which facilitate the self-supervised training process effectively.
arXiv Detail & Related papers (2024-03-20T02:58:45Z) - Methods for Generating Drift in Text Streams [49.3179290313959]
Concept drift is a frequent phenomenon in real-world datasets and corresponds to changes in data distribution over time.
This paper provides four textual drift generation methods to ease the production of datasets with labeled drifts.
Results show that all methods have their performance degraded right after the drifts, and the incremental SVM is the fastest to run and recover the previous performance levels.
arXiv Detail & Related papers (2024-03-18T23:48:33Z) - Unsupervised Discovery of Interpretable Directions in h-space of
Pre-trained Diffusion Models [63.1637853118899]
We propose the first unsupervised and learning-based method to identify interpretable directions in h-space of pre-trained diffusion models.
We employ a shift control module that works on h-space of pre-trained diffusion models to manipulate a sample into a shifted version of itself.
By jointly optimizing them, the model will spontaneously discover disentangled and interpretable directions.
arXiv Detail & Related papers (2023-10-15T18:44:30Z) - Uncovering Drift in Textual Data: An Unsupervised Method for Detecting
and Mitigating Drift in Machine Learning Models [9.035254826664273]
Drift in machine learning refers to the phenomenon where the statistical properties of data or context, in which the model operates, change over time leading to a decrease in its performance.
In our proposed unsupervised drift detection method, we follow a two step process. Our first step involves encoding a sample of production data as the target distribution, and the model training data as the reference distribution.
Our method also identifies the subset of production data that is the root cause of the drift.
The models retrained using these identified high drift samples show improved performance on online customer experience quality metrics.
arXiv Detail & Related papers (2023-09-07T16:45:42Z) - Uncovering the Missing Pattern: Unified Framework Towards Trajectory
Imputation and Prediction [60.60223171143206]
Trajectory prediction is a crucial undertaking in understanding entity movement or human behavior from observed sequences.
Current methods often assume that the observed sequences are complete while ignoring the potential for missing values.
This paper presents a unified framework, the Graph-based Conditional Variational Recurrent Neural Network (GC-VRNN), which can perform trajectory imputation and prediction simultaneously.
arXiv Detail & Related papers (2023-03-28T14:27:27Z) - Autoregressive based Drift Detection Method [0.0]
We propose a new concept drift detection method based on autoregressive models called ADDM.
Our results show that this new concept drift detection method outperforms the state-of-the-art drift detection methods.
arXiv Detail & Related papers (2022-03-09T14:36:16Z) - Real Time Monocular Vehicle Velocity Estimation using Synthetic Data [78.85123603488664]
We look at the problem of estimating the velocity of road vehicles from a camera mounted on a moving car.
We propose a two-step approach where first an off-the-shelf tracker is used to extract vehicle bounding boxes and then a small neural network is used to regress the vehicle velocity.
arXiv Detail & Related papers (2021-09-16T13:10:27Z) - Detecting Concept Drift With Neural Network Model Uncertainty [0.0]
Uncertainty Drift Detection (UDD) is able to detect drifts without access to true labels.
In contrast to input data-based drift detection, our approach considers the effects of the current input data on the properties of the prediction model.
We show that UDD outperforms other state-of-the-art strategies on two synthetic as well as ten real-world data sets for both regression and classification tasks.
arXiv Detail & Related papers (2021-07-05T08:56:36Z) - DriftSurf: A Risk-competitive Learning Algorithm under Concept Drift [12.579800289829963]
When learning from streaming data, a change in the data distribution, also known as concept drift, can render a previously-learned model inaccurate.
We present an adaptive learning algorithm that extends previous drift-detection-based methods by incorporating drift detection into a broader stable-state/reactive-state process.
The algorithm is generic in its base learner and can be applied across a variety of supervised learning problems.
arXiv Detail & Related papers (2020-03-13T23:25:25Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
We propose a method for training a deterministic deep model that can find and reject out of distribution data points at test time with a single forward pass.
We scale training in these with a novel loss function and centroid updating scheme and match the accuracy of softmax models.
arXiv Detail & Related papers (2020-03-04T12:27:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.