Low-light Image and Video Enhancement via Selective Manipulation of
Chromaticity
- URL: http://arxiv.org/abs/2203.04889v1
- Date: Wed, 9 Mar 2022 17:01:28 GMT
- Title: Low-light Image and Video Enhancement via Selective Manipulation of
Chromaticity
- Authors: Sumit Shekhar, Max Reimann, Amir Semmo, Sebastian Pasewaldt, J\"urgen
D\"ollner, Matthias Trapp
- Abstract summary: We present a simple yet effective approach for low-light image and video enhancement.
The above adaptivity allows us to avoid the costly step of low-light image decomposition into illumination and reflectance.
Our results on standard lowlight image datasets show the efficacy of our algorithm and its qualitative and quantitative superiority over several state-of-the-art techniques.
- Score: 1.4680035572775534
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Image acquisition in low-light conditions suffers from poor quality and
significant degradation in visual aesthetics. This affects the visual
perception of the acquired image and the performance of various computer vision
and image processing algorithms applied after acquisition. Especially for
videos, the additional temporal domain makes it more challenging, wherein we
need to preserve quality in a temporally coherent manner. We present a simple
yet effective approach for low-light image and video enhancement. To this end,
we introduce "Adaptive Chromaticity", which refers to an adaptive computation
of image chromaticity. The above adaptivity allows us to avoid the costly step
of low-light image decomposition into illumination and reflectance, employed by
many existing techniques. All stages in our method consist of only point-based
operations and high-pass or low-pass filtering, thereby ensuring that the
amount of temporal incoherence is negligible when applied on a per-frame basis
for videos. Our results on standard lowlight image datasets show the efficacy
of our algorithm and its qualitative and quantitative superiority over several
state-of-the-art techniques. For videos captured in the wild, we perform a user
study to demonstrate the preference for our method in comparison to
state-of-the-art approaches.
Related papers
- Unrolled Decomposed Unpaired Learning for Controllable Low-Light Video Enhancement [48.76608212565327]
This paper makes endeavors in the direction of learning for low-light video enhancement without using paired ground truth.
Compared to low-light image enhancement, enhancing low-light videos is more difficult due to the intertwined effects of noise, exposure, and contrast in the spatial domain, jointly with the need for temporal coherence.
We propose the Unrolled Decomposed Unpaired Network (UDU-Net) for enhancing low-light videos by unrolling the optimization functions into a deep network to decompose the signal into spatial and temporal-related factors, which are updated iteratively.
arXiv Detail & Related papers (2024-08-22T11:45:11Z) - Inhomogeneous illumination image enhancement under ex-tremely low visibility condition [3.534798835599242]
Imaging through dense fog presents unique challenges, with essential visual information crucial for applications like object detection and recognition obscured, thereby hindering conventional image processing methods.
We introduce in this paper a novel method that adaptively filters background illumination based on Structural Differential and Integral Filtering (F) to enhance only vital signal information.
Our findings demonstrate that our proposed method significantly enhances signal clarity under extremely low visibility conditions and out-performs existing techniques, offering substantial improvements for deep fog imaging applications.
arXiv Detail & Related papers (2024-04-26T16:09:42Z) - CodeEnhance: A Codebook-Driven Approach for Low-Light Image Enhancement [97.95330185793358]
Low-light image enhancement (LLIE) aims to improve low-illumination images.
Existing methods face two challenges: uncertainty in restoration from diverse brightness degradations and loss of texture and color information.
We propose a novel enhancement approach, CodeEnhance, by leveraging quantized priors and image refinement.
arXiv Detail & Related papers (2024-04-08T07:34:39Z) - Revealing Shadows: Low-Light Image Enhancement Using Self-Calibrated
Illumination [4.913568097686369]
Self-Calibrated Illumination (SCI) is a strategy initially developed for RGB images.
We employ the SCI method to intensify and clarify details that are typically lost in low-light conditions.
This method of selective illumination enhancement leaves the color information intact, thus preserving the color integrity of the image.
arXiv Detail & Related papers (2023-12-23T08:49:19Z) - Personalized Video Relighting With an At-Home Light Stage [0.0]
We develop a personalized video relighting algorithm that produces high-quality and temporally consistent relit videos in real-time.
We show that by just capturing recordings of a user watching YouTube videos on a monitor we can train a personalized algorithm capable of performing high-quality relighting under any condition.
arXiv Detail & Related papers (2023-11-15T10:33:20Z) - Dimma: Semi-supervised Low Light Image Enhancement with Adaptive Dimming [0.728258471592763]
Enhancing low-light images while maintaining natural colors is a challenging problem due to camera processing variations.
We propose Dimma, a semi-supervised approach that aligns with any camera by utilizing a small set of image pairs.
We achieve that by introducing a convolutional mixture density network that generates distorted colors of the scene based on the illumination differences.
arXiv Detail & Related papers (2023-10-14T17:59:46Z) - Learning to Relight Portrait Images via a Virtual Light Stage and
Synthetic-to-Real Adaptation [76.96499178502759]
Relighting aims to re-illuminate the person in the image as if the person appeared in an environment with the target lighting.
Recent methods rely on deep learning to achieve high-quality results.
We propose a new approach that can perform on par with the state-of-the-art (SOTA) relighting methods without requiring a light stage.
arXiv Detail & Related papers (2022-09-21T17:15:58Z) - Designing An Illumination-Aware Network for Deep Image Relighting [69.750906769976]
We present an Illumination-Aware Network (IAN) which follows the guidance from hierarchical sampling to progressively relight a scene from a single image.
In addition, an Illumination-Aware Residual Block (IARB) is designed to approximate the physical rendering process.
Experimental results show that our proposed method produces better quantitative and qualitative relighting results than previous state-of-the-art methods.
arXiv Detail & Related papers (2022-07-21T16:21:24Z) - Controllable Image Enhancement [66.18525728881711]
We present a semiautomatic image enhancement algorithm that can generate high-quality images with multiple styles by controlling a few parameters.
An encoder-decoder framework encodes the retouching skills into latent codes and decodes them into the parameters of image signal processing functions.
arXiv Detail & Related papers (2022-06-16T23:54:53Z) - Contextual colorization and denoising for low-light ultra high
resolution sequences [0.0]
Low-light image sequences generally suffer from incoherent noise, flicker and blurring of objects and moving objects.
We tackle these problems with an unpaired-learning method that offers simultaneous colorization and denoising.
We show that our method outperforms existing approaches in terms of subjective quality and that it is robust to variations in brightness levels and noise.
arXiv Detail & Related papers (2021-01-05T15:35:29Z) - Deep Bilateral Retinex for Low-Light Image Enhancement [96.15991198417552]
Low-light images suffer from poor visibility caused by low contrast, color distortion and measurement noise.
This paper proposes a deep learning method for low-light image enhancement with a particular focus on handling the measurement noise.
The proposed method is very competitive to the state-of-the-art methods, and has significant advantage over others when processing images captured in extremely low lighting conditions.
arXiv Detail & Related papers (2020-07-04T06:26:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.