Contextual colorization and denoising for low-light ultra high
resolution sequences
- URL: http://arxiv.org/abs/2101.01597v1
- Date: Tue, 5 Jan 2021 15:35:29 GMT
- Title: Contextual colorization and denoising for low-light ultra high
resolution sequences
- Authors: N. Anantrasirichai and David Bull
- Abstract summary: Low-light image sequences generally suffer from incoherent noise, flicker and blurring of objects and moving objects.
We tackle these problems with an unpaired-learning method that offers simultaneous colorization and denoising.
We show that our method outperforms existing approaches in terms of subjective quality and that it is robust to variations in brightness levels and noise.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Low-light image sequences generally suffer from spatio-temporal incoherent
noise, flicker and blurring of moving objects. These artefacts significantly
reduce visual quality and, in most cases, post-processing is needed in order to
generate acceptable quality. Most state-of-the-art enhancement methods based on
machine learning require ground truth data but this is not usually available
for naturally captured low light sequences. We tackle these problems with an
unpaired-learning method that offers simultaneous colorization and denoising.
Our approach is an adaptation of the CycleGAN structure. To overcome the
excessive memory limitations associated with ultra high resolution content, we
propose a multiscale patch-based framework, capturing both local and contextual
features. Additionally, an adaptive temporal smoothing technique is employed to
remove flickering artefacts. Experimental results show that our method
outperforms existing approaches in terms of subjective quality and that it is
robust to variations in brightness levels and noise.
Related papers
- Robust Network Learning via Inverse Scale Variational Sparsification [55.64935887249435]
We introduce an inverse scale variational sparsification framework within a time-continuous inverse scale space formulation.
Unlike frequency-based methods, our approach not only removes noise by smoothing small-scale features.
We show the efficacy of our approach through enhanced robustness against various noise types.
arXiv Detail & Related papers (2024-09-27T03:17:35Z) - Zero-Shot Enhancement of Low-Light Image Based on Retinex Decomposition [4.175396687130961]
We propose a new learning-based Retinex decomposition of zero-shot low-light enhancement method, called ZERRINNet.
Our method is a zero-reference enhancement method that is not affected by the training data of paired and unpaired datasets.
arXiv Detail & Related papers (2023-11-06T09:57:48Z) - Dimma: Semi-supervised Low Light Image Enhancement with Adaptive Dimming [0.728258471592763]
Enhancing low-light images while maintaining natural colors is a challenging problem due to camera processing variations.
We propose Dimma, a semi-supervised approach that aligns with any camera by utilizing a small set of image pairs.
We achieve that by introducing a convolutional mixture density network that generates distorted colors of the scene based on the illumination differences.
arXiv Detail & Related papers (2023-10-14T17:59:46Z) - Diving into Darkness: A Dual-Modulated Framework for High-Fidelity
Super-Resolution in Ultra-Dark Environments [51.58771256128329]
This paper proposes a specialized dual-modulated learning framework that attempts to deeply dissect the nature of the low-light super-resolution task.
We develop Illuminance-Semantic Dual Modulation (ISDM) components to enhance feature-level preservation of illumination and color details.
Comprehensive experiments showcases the applicability and generalizability of our approach to diverse and challenging ultra-low-light conditions.
arXiv Detail & Related papers (2023-09-11T06:55:32Z) - Advancing Unsupervised Low-light Image Enhancement: Noise Estimation, Illumination Interpolation, and Self-Regulation [55.07472635587852]
Low-Light Image Enhancement (LLIE) techniques have made notable advancements in preserving image details and enhancing contrast.
These approaches encounter persistent challenges in efficiently mitigating dynamic noise and accommodating diverse low-light scenarios.
We first propose a method for estimating the noise level in low light images in a quick and accurate way.
We then devise a Learnable Illumination Interpolator (LII) to satisfy general constraints between illumination and input.
arXiv Detail & Related papers (2023-05-17T13:56:48Z) - Low-light Image and Video Enhancement via Selective Manipulation of
Chromaticity [1.4680035572775534]
We present a simple yet effective approach for low-light image and video enhancement.
The above adaptivity allows us to avoid the costly step of low-light image decomposition into illumination and reflectance.
Our results on standard lowlight image datasets show the efficacy of our algorithm and its qualitative and quantitative superiority over several state-of-the-art techniques.
arXiv Detail & Related papers (2022-03-09T17:01:28Z) - Progressive Joint Low-light Enhancement and Noise Removal for Raw Images [10.778200442212334]
Low-light imaging on mobile devices is typically challenging due to insufficient incident light coming through the relatively small aperture.
We propose a low-light image processing framework that performs joint illumination adjustment, color enhancement, and denoising.
Our framework does not need to recollect massive data when being adapted to another camera model.
arXiv Detail & Related papers (2021-06-28T16:43:52Z) - Learning Spatial and Spatio-Temporal Pixel Aggregations for Image and
Video Denoising [104.59305271099967]
We present a pixel aggregation network and learn the pixel sampling and averaging strategies for image denoising.
We develop a pixel aggregation network for video denoising to sample pixels across the spatial-temporal space.
Our method is able to solve the misalignment issues caused by large motion in dynamic scenes.
arXiv Detail & Related papers (2021-01-26T13:00:46Z) - Deep Bilateral Retinex for Low-Light Image Enhancement [96.15991198417552]
Low-light images suffer from poor visibility caused by low contrast, color distortion and measurement noise.
This paper proposes a deep learning method for low-light image enhancement with a particular focus on handling the measurement noise.
The proposed method is very competitive to the state-of-the-art methods, and has significant advantage over others when processing images captured in extremely low lighting conditions.
arXiv Detail & Related papers (2020-07-04T06:26:44Z) - Unsupervised Low-light Image Enhancement with Decoupled Networks [103.74355338972123]
We learn a two-stage GAN-based framework to enhance the real-world low-light images in a fully unsupervised fashion.
Our proposed method outperforms the state-of-the-art unsupervised image enhancement methods in terms of both illumination enhancement and noise reduction.
arXiv Detail & Related papers (2020-05-06T13:37:08Z) - Burst Denoising of Dark Images [19.85860245798819]
We propose a deep learning framework for obtaining clean and colorful RGB images from extremely dark raw images.
The backbone of our framework is a novel coarse-to-fine network architecture that generates high-quality outputs in a progressive manner.
Our experiments demonstrate that the proposed approach leads to perceptually more pleasing results than state-of-the-art methods.
arXiv Detail & Related papers (2020-03-17T17:17:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.