論文の概要: A Tree-Structured Multi-Task Model Recommender
- arxiv url: http://arxiv.org/abs/2203.05092v1
- Date: Thu, 10 Mar 2022 00:09:43 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-11 13:40:28.614433
- Title: A Tree-Structured Multi-Task Model Recommender
- Title(参考訳): 木構造型マルチタスクモデルレコメンダ
- Authors: Lijun Zhang, Xiao Liu, Hui Guan
- Abstract要約: 木構造型マルチタスクアーキテクチャは、マルチタスク学習(MTL)のコンテキストにおいて、複数の視覚タスクに取り組むために採用されている。
本稿では,モデルトレーニングを行なわずにユーザ指定の計算予算を満たしながら高いタスク性能を実現することができる木構造マルチタスクアーキテクチャを提案する。
一般的なMTLベンチマークの大規模な評価は、推奨アーキテクチャが最先端のMTL手法と比較して、競合するタスク精度と計算効率を達成できることを示している。
- 参考スコア(独自算出の注目度): 25.445073413243925
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Tree-structured multi-task architectures have been employed to jointly tackle
multiple vision tasks in the context of multi-task learning (MTL). The major
challenge is to determine where to branch out for each task given a backbone
model to optimize for both task accuracy and computation efficiency. To address
the challenge, this paper proposes a recommender that, given a set of tasks and
a convolutional neural network-based backbone model, automatically suggests
tree-structured multi-task architectures that could achieve a high task
performance while meeting a user-specified computation budget without
performing model training. Extensive evaluations on popular MTL benchmarks show
that the recommended architectures could achieve competitive task accuracy and
computation efficiency compared with state-of-the-art MTL methods.
- Abstract(参考訳): 木構造型マルチタスクアーキテクチャは、マルチタスク学習(MTL)のコンテキストにおいて、複数の視覚タスクに共同で取り組むために使用されている。
主な課題は、タスクの正確性と計算効率の両方を最適化するためのバックボーンモデルが与えられた場合、各タスクの分岐先を決定することである。
そこで本研究では,タスクセットと畳み込みニューラルネットワークに基づくバックボーンモデルを用いて,モデルトレーニングを行なわずにユーザ指定の計算予算を満たしながら高いタスク性能を実現することができる木構造型マルチタスクアーキテクチャを自動提案する。
一般的なMTLベンチマークの大規模な評価は、推奨アーキテクチャが最先端のMTL手法と比較して、競合するタスク精度と計算効率を達成できることを示している。
関連論文リスト
- Giving each task what it needs -- leveraging structured sparsity for tailored multi-task learning [4.462334751640166]
マルチタスク学習(MTL)フレームワークでは、各タスクは、低レベルから高レベルの属性まで、異なる特徴表現を要求する。
この研究は、構造化された空間を利用して個々のタスクの特徴選択を洗練し、マルチタスクシナリオにおける全てのタスクのパフォーマンスを向上させるレイヤdマルチタスクモデルを導入する。
論文 参考訳(メタデータ) (2024-06-05T08:23:38Z) - InterroGate: Learning to Share, Specialize, and Prune Representations
for Multi-task Learning [17.66308231838553]
推論計算効率を最適化しつつ,タスク干渉を緩和する新しいマルチタスク学習(MTL)アーキテクチャを提案する。
学習可能なゲーティング機構を用いて、すべてのタスクのパフォーマンスを保ちながら、共有表現とタスク固有の表現を自動的にバランスさせる。
論文 参考訳(メタデータ) (2024-02-26T18:59:52Z) - JiuZhang 2.0: A Unified Chinese Pre-trained Language Model for
Multi-task Mathematical Problem Solving [77.51817534090789]
マルチタスク数学問題の解法を専門とする統一中国語 PLM である textbfJiuZhang2.0 を提案する。
我々の考えは、中規模のモデルを維持し、マルチタスク設定におけるモデル容量を改善するために、Emphcross-taskの知識共有を利用することである。
論文 参考訳(メタデータ) (2023-06-19T15:45:36Z) - AutoTransfer: AutoML with Knowledge Transfer -- An Application to Graph
Neural Networks [75.11008617118908]
AutoML技術は、各タスクをスクラッチから独立して考慮し、高い計算コストをもたらす。
本稿では,従来の設計知識を新たな関心事に伝達することで,検索効率を向上させるAutoTransferを提案する。
論文 参考訳(メタデータ) (2023-03-14T07:23:16Z) - Provable Pathways: Learning Multiple Tasks over Multiple Paths [31.43753806123382]
複数の経路上の複数のタスクを学習する経験的リスク最小化問題に対する新しい一般化境界を開発する。
同時に、新しい下流タスクに適応する際のマルチパス表現の利点を形式化する。
論文 参考訳(メタデータ) (2023-03-08T02:25:28Z) - Task Aware Feature Extraction Framework for Sequential Dependence
Multi-Task Learning [1.0765359420035392]
我々は厳密な数学的観点から逐次依存型MLLを解析する。
逐次依存型MLLのためのタスク認識特徴抽出(TAFE)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-01-06T13:12:59Z) - Controllable Dynamic Multi-Task Architectures [92.74372912009127]
本稿では,そのアーキテクチャと重みを動的に調整し,所望のタスク選択とリソース制約に適合させる制御可能なマルチタスクネットワークを提案する。
本稿では,タスク親和性と分岐正規化損失を利用した2つのハイパーネットの非交互トレーニングを提案し,入力の嗜好を取り入れ,適応重み付き木構造モデルを予測する。
論文 参考訳(メタデータ) (2022-03-28T17:56:40Z) - Exploring Relational Context for Multi-Task Dense Prediction [76.86090370115]
我々は,共通バックボーンと独立タスク固有のヘッドで表される,密集予測タスクのためのマルチタスク環境を考える。
マルチタスク設定では,グローバルやローカルなど,さまざまな注意に基づくコンテキストを探索する。
タスクペアごとに利用可能なすべてのコンテキストのプールをサンプリングするAdaptive Task-Relational Contextモジュールを提案する。
論文 参考訳(メタデータ) (2021-04-28T16:45:56Z) - Neural Architecture Search From Fr\'echet Task Distance [50.9995960884133]
与えられたベースラインタスクのセット内の対象タスクと各タスクの間の距離を、ターゲットタスクのニューラルネットワークアーキテクチャ検索スペースを減らすためにどのように使用できるかを示す。
タスク固有のアーキテクチャに対する検索空間の複雑さの低減は、このサイド情報を用いることなく完全な検索を行う代わりに、類似したタスクのために最適化されたアーキテクチャ上に構築することで達成される。
論文 参考訳(メタデータ) (2021-03-23T20:43:31Z) - Multi-Task Learning for Dense Prediction Tasks: A Survey [87.66280582034838]
マルチタスク学習(MTL)技術は、性能、計算、メモリフットプリントに関する有望な結果を示している。
我々は、コンピュータビジョンにおけるMLLのための最先端のディープラーニングアプローチについて、よく理解された視点を提供する。
論文 参考訳(メタデータ) (2020-04-28T09:15:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。