Frequency-driven Imperceptible Adversarial Attack on Semantic Similarity
- URL: http://arxiv.org/abs/2203.05151v1
- Date: Thu, 10 Mar 2022 04:46:51 GMT
- Title: Frequency-driven Imperceptible Adversarial Attack on Semantic Similarity
- Authors: Cheng Luo, Qinliang Lin, Weicheng Xie, Bizhu Wu, Jinheng Xie, Linlin
Shen
- Abstract summary: adversarial attack research reveals the vulnerability of learning-based classifiers against carefully crafted perturbations.
We propose a novel algorithm that attacks semantic similarity on feature representations.
For imperceptibility, we introduce the low-frequency constraint to limit perturbations within high-frequency components.
- Score: 22.28011382580367
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Current adversarial attack research reveals the vulnerability of
learning-based classifiers against carefully crafted perturbations. However,
most existing attack methods have inherent limitations in cross-dataset
generalization as they rely on a classification layer with a closed set of
categories. Furthermore, the perturbations generated by these methods may
appear in regions easily perceptible to the human visual system (HVS). To
circumvent the former problem, we propose a novel algorithm that attacks
semantic similarity on feature representations. In this way, we are able to
fool classifiers without limiting attacks to a specific dataset. For
imperceptibility, we introduce the low-frequency constraint to limit
perturbations within high-frequency components, ensuring perceptual similarity
between adversarial examples and originals. Extensive experiments on three
datasets (CIFAR-10, CIFAR-100, and ImageNet-1K) and three public online
platforms indicate that our attack can yield misleading and transferable
adversarial examples across architectures and datasets. Additionally,
visualization results and quantitative performance (in terms of four different
metrics) show that the proposed algorithm generates more imperceptible
perturbations than the state-of-the-art methods. Code is made available at.
Related papers
- Regularized Contrastive Partial Multi-view Outlier Detection [76.77036536484114]
We propose a novel method named Regularized Contrastive Partial Multi-view Outlier Detection (RCPMOD)
In this framework, we utilize contrastive learning to learn view-consistent information and distinguish outliers by the degree of consistency.
Experimental results on four benchmark datasets demonstrate that our proposed approach could outperform state-of-the-art competitors.
arXiv Detail & Related papers (2024-08-02T14:34:27Z) - Detecting Adversarial Data via Perturbation Forgery [28.637963515748456]
adversarial detection aims to identify and filter out adversarial data from the data flow based on discrepancies in distribution and noise patterns between natural and adversarial data.
New attacks based on generative models with imbalanced and anisotropic noise patterns evade detection.
We propose Perturbation Forgery, which includes noise distribution perturbation, sparse mask generation, and pseudo-adversarial data production, to train an adversarial detector capable of detecting unseen gradient-based, generative-model-based, and physical adversarial attacks.
arXiv Detail & Related papers (2024-05-25T13:34:16Z) - How adversarial attacks can disrupt seemingly stable accurate classifiers [76.95145661711514]
Adversarial attacks dramatically change the output of an otherwise accurate learning system using a seemingly inconsequential modification to a piece of input data.
Here, we show that this may be seen as a fundamental feature of classifiers working with high dimensional input data.
We introduce a simple generic and generalisable framework for which key behaviours observed in practical systems arise with high probability.
arXiv Detail & Related papers (2023-09-07T12:02:00Z) - Adversarial Examples Detection with Enhanced Image Difference Features
based on Local Histogram Equalization [20.132066800052712]
We propose an adversarial example detection framework based on a high-frequency information enhancement strategy.
This framework can effectively extract and amplify the feature differences between adversarial examples and normal examples.
arXiv Detail & Related papers (2023-05-08T03:14:01Z) - Resisting Adversarial Attacks in Deep Neural Networks using Diverse
Decision Boundaries [12.312877365123267]
Deep learning systems are vulnerable to crafted adversarial examples, which may be imperceptible to the human eye, but can lead the model to misclassify.
We develop a new ensemble-based solution that constructs defender models with diverse decision boundaries with respect to the original model.
We present extensive experimentations using standard image classification datasets, namely MNIST, CIFAR-10 and CIFAR-100 against state-of-the-art adversarial attacks.
arXiv Detail & Related papers (2022-08-18T08:19:26Z) - PARL: Enhancing Diversity of Ensemble Networks to Resist Adversarial
Attacks via Pairwise Adversarially Robust Loss Function [13.417003144007156]
adversarial attacks tend to rely on the principle of transferability.
Ensemble methods against adversarial attacks demonstrate that an adversarial example is less likely to mislead multiple classifiers.
Recent ensemble methods have either been shown to be vulnerable to stronger adversaries or shown to lack an end-to-end evaluation.
arXiv Detail & Related papers (2021-12-09T14:26:13Z) - Towards A Conceptually Simple Defensive Approach for Few-shot
classifiers Against Adversarial Support Samples [107.38834819682315]
We study a conceptually simple approach to defend few-shot classifiers against adversarial attacks.
We propose a simple attack-agnostic detection method, using the concept of self-similarity and filtering.
Our evaluation on the miniImagenet (MI) and CUB datasets exhibit good attack detection performance.
arXiv Detail & Related papers (2021-10-24T05:46:03Z) - Discriminator-Free Generative Adversarial Attack [87.71852388383242]
Agenerative-based adversarial attacks can get rid of this limitation.
ASymmetric Saliency-based Auto-Encoder (SSAE) generates the perturbations.
The adversarial examples generated by SSAE not only make thewidely-used models collapse, but also achieves good visual quality.
arXiv Detail & Related papers (2021-07-20T01:55:21Z) - Learning to Separate Clusters of Adversarial Representations for Robust
Adversarial Detection [50.03939695025513]
We propose a new probabilistic adversarial detector motivated by a recently introduced non-robust feature.
In this paper, we consider the non-robust features as a common property of adversarial examples, and we deduce it is possible to find a cluster in representation space corresponding to the property.
This idea leads us to probability estimate distribution of adversarial representations in a separate cluster, and leverage the distribution for a likelihood based adversarial detector.
arXiv Detail & Related papers (2020-12-07T07:21:18Z) - ATRO: Adversarial Training with a Rejection Option [10.36668157679368]
This paper proposes a classification framework with a rejection option to mitigate the performance deterioration caused by adversarial examples.
Applying the adversarial training objective to both a classifier and a rejection function simultaneously, we can choose to abstain from classification when it has insufficient confidence to classify a test data point.
arXiv Detail & Related papers (2020-10-24T14:05:03Z) - Temporal Sparse Adversarial Attack on Sequence-based Gait Recognition [56.844587127848854]
We demonstrate that the state-of-the-art gait recognition model is vulnerable to such attacks.
We employ a generative adversarial network based architecture to semantically generate adversarial high-quality gait silhouettes or video frames.
The experimental results show that if only one-fortieth of the frames are attacked, the accuracy of the target model drops dramatically.
arXiv Detail & Related papers (2020-02-22T10:08:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.