論文の概要: Connecting Neural Response measurements & Computational Models of
language: a non-comprehensive guide
- arxiv url: http://arxiv.org/abs/2203.05300v1
- Date: Thu, 10 Mar 2022 11:24:54 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-11 22:40:57.544573
- Title: Connecting Neural Response measurements & Computational Models of
language: a non-comprehensive guide
- Title(参考訳): ニューラルレスポンス測定と言語計算モデル:非包括的ガイド
- Authors: Mostafa Abdou
- Abstract要約: 言語モデリングとニューロイメージングにおける最近の進歩は、言語神経生物学の研究において潜在的な改善をもたらす可能性がある。
この調査は、単純な言語モデルから派生したイベント関連ポテンシャルと複雑性尺度をリンクする初期の研究から、大規模コーパスで訓練されたニューラルネットワークモデルを用いた現代研究まで、一線を辿っている。
- 参考スコア(独自算出の注目度): 5.523143941738335
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding the neural basis of language comprehension in the brain has
been a long-standing goal of various scientific research programs. Recent
advances in language modelling and in neuroimaging methodology promise
potential improvements in both the investigation of language's neurobiology and
in the building of better and more human-like language models. This survey
traces a line from early research linking Event Related Potentials and
complexity measures derived from simple language models to contemporary studies
employing Artificial Neural Network models trained on large corpora in
combination with neural response recordings from multiple modalities using
naturalistic stimuli.
- Abstract(参考訳): 脳内の言語理解の神経基盤を理解することは、様々な科学研究プログラムの長年の目標であった。
言語モデリングとニューロイメージング手法の最近の進歩は、言語の神経生物学の研究と、より優れた人間的な言語モデルの構築の両方において潜在的な改善を約束している。
この調査は、単純な言語モデルから派生した事象関連電位と複雑性尺度を関連づけた初期の研究から、複数のモーダルからのニューラル応答記録と自然主義的刺激を併用した大規模コーパスで訓練された人工ニューラルネットワークモデルを用いた現代の研究まで遡る。
関連論文リスト
- Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
人工ニューラルネットワーク(ANN)の強化のための生物学的インフォームドフレームワークを提案する。
提案したデュアルフレームアプローチは、多様なスパイキング動作をエミュレートするためのスパイキングニューラルネットワーク(SNN)の可能性を強調している。
提案手法は脳にインスパイアされたコンパートメントモデルとタスク駆動型SNN, バイオインスピレーション, 複雑性を統合している。
論文 参考訳(メタデータ) (2024-07-05T14:11:28Z) - Navigating Brain Language Representations: A Comparative Analysis of Neural Language Models and Psychologically Plausible Models [29.50162863143141]
様々なニューラルネットワークモデルと心理的に妥当なモデルの符号化性能を比較した。
意外なことに、心理学的に妥当なモデルが、さまざまな文脈でニューラルネットワークモデルより優れていることが判明した。
論文 参考訳(メタデータ) (2024-04-30T08:48:07Z) - Language Generation from Brain Recordings [68.97414452707103]
本稿では,大言語モデルと意味脳デコーダの容量を利用した生成言語BCIを提案する。
提案モデルでは,視覚的・聴覚的言語刺激のセマンティック内容に整合したコヒーレントな言語系列を生成することができる。
本研究は,直接言語生成におけるBCIの活用の可能性と可能性を示すものである。
論文 参考訳(メタデータ) (2023-11-16T13:37:21Z) - Automated Natural Language Explanation of Deep Visual Neurons with Large
Models [43.178568768100305]
本稿では,大きな基礎モデルを持つニューロンの意味的説明を生成するための,新しいポストホックフレームワークを提案する。
我々のフレームワークは、様々なモデルアーキテクチャやデータセット、自動化されたスケーラブルなニューロン解釈と互換性があるように設計されています。
論文 参考訳(メタデータ) (2023-10-16T17:04:51Z) - Deep Learning Models to Study Sentence Comprehension in the Human Brain [0.1503974529275767]
自然言語を処理する最近の人工ニューラルネットワークは、文レベルの理解を必要とするタスクにおいて、前例のないパフォーマンスを達成する。
我々は、これらの人工言語モデルと人間の脳活動を比較する研究をレビューし、このアプローチが自然言語理解に関わる神経プロセスの理解をいかに改善したかを評価する。
論文 参考訳(メタデータ) (2023-01-16T10:31:25Z) - Neural Language Models are not Born Equal to Fit Brain Data, but
Training Helps [75.84770193489639]
音声ブックを聴く被験者の機能的磁気共鳴イメージングの時間軸予測に及ぼすテスト損失,トレーニングコーパス,モデルアーキテクチャの影響について検討した。
各モデルの訓練されていないバージョンは、同じ単語をまたいだ脳反応の類似性を捉えることで、脳内のかなりの量のシグナルをすでに説明していることがわかりました。
ニューラル言語モデルを用いたヒューマン・ランゲージ・システムの説明を目的とした今後の研究の実践を提案する。
論文 参考訳(メタデータ) (2022-07-07T15:37:17Z) - Same Neurons, Different Languages: Probing Morphosyntax in Multilingual
Pre-trained Models [84.86942006830772]
多言語事前学習モデルは文法に関する言語・ユニバーサルの抽象化を導出できると推測する。
43の言語と14のモルフォシンタクティックなカテゴリーで、最先端のニューロンレベルのプローブを用いて、初めて大規模な実験を行った。
論文 参考訳(メタデータ) (2022-05-04T12:22:31Z) - Dependency-based Mixture Language Models [53.152011258252315]
依存性に基づく混合言語モデルを紹介する。
より詳しくは、依存関係モデリングの新たな目的により、まずニューラルネットワークモデルを訓練する。
次に、前回の依存性モデリング確率分布と自己意図を混合することにより、次の確率を定式化する。
論文 参考訳(メタデータ) (2022-03-19T06:28:30Z) - Model-based analysis of brain activity reveals the hierarchy of language
in 305 subjects [82.81964713263483]
言語の神経基盤を分解する一般的なアプローチは、個人間で異なる刺激に対する脳の反応を関連付けている。
そこで本研究では,自然刺激に曝露された被験者に対して,モデルに基づくアプローチが等価な結果が得られることを示す。
論文 参考訳(メタデータ) (2021-10-12T15:30:21Z) - Does injecting linguistic structure into language models lead to better
alignment with brain recordings? [13.880819301385854]
言語モデルと脳記録との整合性は,構文的あるいは意味論的フォーマリズムからのアノテーションに偏りがある場合と評価する。
提案手法は,脳内の意味の組成について,より標的となる仮説の評価を可能にする。
論文 参考訳(メタデータ) (2021-01-29T14:42:02Z) - Emergence of Separable Manifolds in Deep Language Representations [26.002842878797765]
ディープニューラルネットワーク(DNN)は、様々な認知的モダリティをまたいだ知覚的タスクの解決において、非常に経験的な成功を示している。
最近の研究では、タスク最適化DNNから抽出された表現と脳内の神経集団の間にかなりの類似性が報告されている。
DNNは後に、複雑な認知機能の基礎となる計算原理を推論する一般的なモデルクラスとなった。
論文 参考訳(メタデータ) (2020-06-01T17:23:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。