Fusion of Sentiment and Asset Price Predictions for Portfolio
Optimization
- URL: http://arxiv.org/abs/2203.05673v1
- Date: Thu, 10 Mar 2022 23:21:12 GMT
- Title: Fusion of Sentiment and Asset Price Predictions for Portfolio
Optimization
- Authors: Mufhumudzi Muthivhi, Terence L. van Zyl
- Abstract summary: This paper uses a Semantic Attention Model to predict sentiment towards an asset.
We select the optimal portfolio through a sentiment-aware Long Short Term Memory.
Strategy does not outperform traditional portfolio allocation strategies from a stability perspective.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The fusion of public sentiment data in the form of text with stock price
prediction is a topic of increasing interest within the financial community.
However, the research literature seldom explores the application of investor
sentiment in the Portfolio Selection problem. This paper aims to unpack and
develop an enhanced understanding of the sentiment aware portfolio selection
problem. To this end, the study uses a Semantic Attention Model to predict
sentiment towards an asset. We select the optimal portfolio through a
sentiment-aware Long Short Term Memory (LSTM) recurrent neural network for
price prediction and a mean-variance strategy. Our sentiment portfolio
strategies achieved on average a significant increase in revenue above the
non-sentiment aware models. However, the results show that our strategy does
not outperform traditional portfolio allocation strategies from a stability
perspective. We argue that an improved fusion of sentiment prediction with a
combination of price prediction and portfolio optimization leads to an enhanced
portfolio selection strategy.
Related papers
- Conformal Predictive Portfolio Selection [10.470114319701576]
We propose a framework for predictive portfolio selection using conformal inference, called Conformal Predictive Portfolio Selection ( CPPS)
Our approach predicts future portfolio returns, computes corresponding prediction intervals, and selects the desirable portfolio based on these intervals.
We demonstrate the effectiveness of our CPPS framework using an AR model and validate its performance through empirical studies.
arXiv Detail & Related papers (2024-10-19T15:42:49Z) - DeepClair: Utilizing Market Forecasts for Effective Portfolio Selection [29.43115584494825]
We introduce DeepClair, a novel framework for portfolio selection.
DeepClair leverages a transformer-based time-series forecasting model to predict market trends.
arXiv Detail & Related papers (2024-07-18T11:51:03Z) - Deep Reinforcement Learning and Mean-Variance Strategies for Responsible Portfolio Optimization [49.396692286192206]
We study the use of deep reinforcement learning for responsible portfolio optimization by incorporating ESG states and objectives.
Our results show that deep reinforcement learning policies can provide competitive performance against mean-variance approaches for responsible portfolio allocation.
arXiv Detail & Related papers (2024-03-25T12:04:03Z) - Cryptocurrency Portfolio Optimization by Neural Networks [81.20955733184398]
This paper proposes an effective algorithm based on neural networks to take advantage of these investment products.
A deep neural network, which outputs the allocation weight of each asset at a time interval, is trained to maximize the Sharpe ratio.
A novel loss term is proposed to regulate the network's bias towards a specific asset, thus enforcing the network to learn an allocation strategy that is close to a minimum variance strategy.
arXiv Detail & Related papers (2023-10-02T12:33:28Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
Multi-step stock price prediction over a long-term horizon is crucial for forecasting its volatility.
Current solutions to multi-step stock price prediction are mostly designed for single-step, classification-based predictions.
We combine a deep hierarchical variational-autoencoder (VAE) and diffusion probabilistic techniques to do seq2seq stock prediction.
Our model is shown to outperform state-of-the-art solutions in terms of its prediction accuracy and variance.
arXiv Detail & Related papers (2023-08-18T16:21:15Z) - Model-Free Market Risk Hedging Using Crowding Networks [1.4786952412297811]
Crowding is widely regarded as one of the most important risk factors in designing portfolio strategies.
We analyze stock crowding using network analysis of fund holdings, which is used to compute crowding scores for stocks.
Our method provides an alternative way to hedge portfolio risk including tail risk, which does not require costly option-based strategies or complex numerical optimization.
arXiv Detail & Related papers (2023-06-13T19:50:03Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
We document the capability of large language models (LLMs) like ChatGPT to predict stock price movements using news headlines.
We develop a theoretical model incorporating information capacity constraints, underreaction, limits-to-arbitrage, and LLMs.
arXiv Detail & Related papers (2023-04-15T19:22:37Z) - Precise Stock Price Prediction for Robust Portfolio Design from Selected
Sectors of the Indian Stock Market [0.0]
We have built the minimum variance portfolio and optimal risk portfolio for all the five chosen sectors.
A comparative study of minimum variance portfolio and optimal risk portfolio with equal weight portfolio is done by backtesting.
arXiv Detail & Related papers (2022-01-14T17:24:19Z) - HIST: A Graph-based Framework for Stock Trend Forecasting via Mining
Concept-Oriented Shared Information [73.40830291141035]
Several methods were recently proposed to mine the shared information through stock concepts extracted from the Web to improve the forecasting results.
Previous work assumes the connections between stocks and concepts are stationary, and neglects the dynamic relevance between stocks and concepts.
We propose a novel stock trend forecasting framework that can adequately mine the concept-oriented shared information from predefined concepts and hidden concepts.
arXiv Detail & Related papers (2021-10-26T14:04:04Z) - Deep Stock Predictions [58.720142291102135]
We consider the design of a trading strategy that performs portfolio optimization using Long Short Term Memory (LSTM) neural networks.
We then customize the loss function used to train the LSTM to increase the profit earned.
We find the LSTM model with the customized loss function to have an improved performance in the training bot over a regressive baseline such as ARIMA.
arXiv Detail & Related papers (2020-06-08T23:37:47Z) - Deep Learning for Portfolio Optimization [5.833272638548154]
Instead of selecting individual assets, we trade Exchange-Traded Funds (ETFs) of market indices to form a portfolio.
We compare our method with a wide range of algorithms with results showing that our model obtains the best performance over the testing period.
arXiv Detail & Related papers (2020-05-27T21:28:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.