Hyperbolic Image Segmentation
- URL: http://arxiv.org/abs/2203.05898v1
- Date: Fri, 11 Mar 2022 13:07:51 GMT
- Title: Hyperbolic Image Segmentation
- Authors: Mina GhadimiAtigh, Julian Schoep, Erman Acar, Nanne van Noord, Pascal
Mettes
- Abstract summary: We propose a tractable formulation of hierarchical pixel-level classification in hyperbolic space.
Hyperbolic Image opens up new possibilities and practical benefits for segmentation.
- Score: 16.50554261593531
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: For image segmentation, the current standard is to perform pixel-level
optimization and inference in Euclidean output embedding spaces through linear
hyperplanes. In this work, we show that hyperbolic manifolds provide a valuable
alternative for image segmentation and propose a tractable formulation of
hierarchical pixel-level classification in hyperbolic space. Hyperbolic Image
Segmentation opens up new possibilities and practical benefits for
segmentation, such as uncertainty estimation and boundary information for free,
zero-label generalization, and increased performance in low-dimensional output
embeddings.
Related papers
- Pixel-Level Clustering Network for Unsupervised Image Segmentation [3.69853388955692]
We present a pixel-level clustering framework for segmenting images into regions without using ground truth annotations.
We also propose a training strategy that utilizes intra-consistency within each superpixel, inter-similarity/dissimilarity between neighboring superpixels, and structural similarity between images.
arXiv Detail & Related papers (2023-10-24T23:06:29Z) - From Explanations to Segmentation: Using Explainable AI for Image
Segmentation [1.8581514902689347]
We build upon the advances of the Explainable AI (XAI) community and extract a pixel-wise binary segmentation.
We show that we achieve similar results compared to an established U-Net segmentation architecture.
The proposed method can be trained in a weakly supervised fashion, as the training samples must be only labeled on image-level.
arXiv Detail & Related papers (2022-02-01T10:26:10Z) - Superpixel-guided Discriminative Low-rank Representation of
Hyperspectral Images for Classification [49.32130776974202]
SP-DLRR is composed of two modules, i.e., the classification-guided superpixel segmentation and the discriminative low-rank representation.
Experimental results on three benchmark datasets demonstrate the significant superiority of SP-DLRR over state-of-the-art methods.
arXiv Detail & Related papers (2021-08-25T10:47:26Z) - Semi-supervised Semantic Segmentation with Directional Context-aware
Consistency [66.49995436833667]
We focus on the semi-supervised segmentation problem where only a small set of labeled data is provided with a much larger collection of totally unlabeled images.
A preferred high-level representation should capture the contextual information while not losing self-awareness.
We present the Directional Contrastive Loss (DC Loss) to accomplish the consistency in a pixel-to-pixel manner.
arXiv Detail & Related papers (2021-06-27T03:42:40Z) - BoundarySqueeze: Image Segmentation as Boundary Squeezing [104.43159799559464]
We propose a novel method for fine-grained high-quality image segmentation of both objects and scenes.
Inspired by dilation and erosion from morphological image processing techniques, we treat the pixel level segmentation problems as squeezing object boundary.
Our method yields large gains on COCO, Cityscapes, for both instance and semantic segmentation and outperforms previous state-of-the-art PointRend in both accuracy and speed under the same setting.
arXiv Detail & Related papers (2021-05-25T04:58:51Z) - Segmenter: Transformer for Semantic Segmentation [79.9887988699159]
We introduce Segmenter, a transformer model for semantic segmentation.
We build on the recent Vision Transformer (ViT) and extend it to semantic segmentation.
It outperforms the state of the art on the challenging ADE20K dataset and performs on-par on Pascal Context and Cityscapes.
arXiv Detail & Related papers (2021-05-12T13:01:44Z) - All you need are a few pixels: semantic segmentation with PixelPick [30.234492042103966]
In this work, we show that in order to achieve a good level of segmentation performance, all you need are a few well-chosen pixel labels.
We demonstrate how to exploit this phenomena within an active learning framework, termed PixelPick, to radically reduce labelling cost.
arXiv Detail & Related papers (2021-04-13T17:55:33Z) - Superpixel Segmentation Based on Spatially Constrained Subspace
Clustering [57.76302397774641]
We consider each representative region with independent semantic information as a subspace, and formulate superpixel segmentation as a subspace clustering problem.
We show that a simple integration of superpixel segmentation with the conventional subspace clustering does not effectively work due to the spatial correlation of the pixels.
We propose a novel convex locality-constrained subspace clustering model that is able to constrain the spatial adjacent pixels with similar attributes to be clustered into a superpixel.
arXiv Detail & Related papers (2020-12-11T06:18:36Z) - Invariant Deep Compressible Covariance Pooling for Aerial Scene
Categorization [80.55951673479237]
We propose a novel invariant deep compressible covariance pooling (IDCCP) to solve nuisance variations in aerial scene categorization.
We conduct extensive experiments on the publicly released aerial scene image data sets and demonstrate the superiority of this method compared with state-of-the-art methods.
arXiv Detail & Related papers (2020-11-11T11:13:07Z) - Geodesic Paths for Image Segmentation with Implicit Region-based
Homogeneity Enhancement [19.309722425910465]
We introduce a flexible interactive image segmentation model based on the Eikonal partial differential equation (PDE) framework.
The proposed model indeed outperforms state-of-the-art minimal paths-based image segmentation approaches.
arXiv Detail & Related papers (2020-08-16T13:29:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.