Random Ensemble Reinforcement Learning for Traffic Signal Control
- URL: http://arxiv.org/abs/2203.05961v1
- Date: Thu, 10 Mar 2022 08:45:47 GMT
- Title: Random Ensemble Reinforcement Learning for Traffic Signal Control
- Authors: Ruijie Qi, Jianbin Huang, He Li, Qinglin Tan, Longji Huang and
Jiangtao Cui
- Abstract summary: An efficient traffic signal control strategy can reduce traffic congestion, improve urban road traffic efficiency and facilitate people's lives.
Existing reinforcement learning approaches for traffic signal control mainly focus on learning through a separate neural network.
- Score: 5.191217870404512
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Traffic signal control is a significant part of the construction of
intelligent transportation. An efficient traffic signal control strategy can
reduce traffic congestion, improve urban road traffic efficiency and facilitate
people's lives. Existing reinforcement learning approaches for traffic signal
control mainly focus on learning through a separate neural network. Such an
independent neural network may fall into the local optimum of the training
results. Worse more, the collected data can only be sampled once, so the data
utilization rate is low. Therefore, we propose the Random Ensemble Double DQN
Light (RELight) model. It can dynamically learn traffic signal control
strategies through reinforcement learning and combine random ensemble learning
to avoid falling into the local optimum to reach the optimal strategy.
Moreover, we introduce the Update-To-Data (UTD) ratio to control the number of
data reuses to improve the problem of low data utilization. In addition, we
have conducted sufficient experiments on synthetic data and real-world data to
prove that our proposed method can achieve better traffic signal control
effects than the existing optimal methods.
Related papers
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
This paper introduces the Signal-Enhanced Graph Convolutional Network Long Short Term Memory (SGCN-LSTM) model for predicting traffic speeds across road networks.
Experiments on the PEMS-BAY road network traffic dataset demonstrate the SGCN-LSTM model's effectiveness.
arXiv Detail & Related papers (2024-11-01T00:37:00Z) - MoveLight: Enhancing Traffic Signal Control through Movement-Centric Deep Reinforcement Learning [13.369840354712021]
MoveLight is a novel traffic signal control system that enhances urban traffic management through movement-centric deep reinforcement learning.
By leveraging detailed real-time data and advanced machine learning techniques, MoveLight overcomes the limitations of traditional traffic signal control methods.
arXiv Detail & Related papers (2024-07-24T14:17:16Z) - Reinforcement Learning Approaches for Traffic Signal Control under
Missing Data [5.896742981602458]
In real-world urban scenarios, missing observation of traffic states may frequently occur due to the lack of sensors.
We propose two solutions: the first one imputes the traffic states to enable adaptive control, and the second one imputes both states and rewards to enable adaptive control and the training of RL agents.
arXiv Detail & Related papers (2023-04-21T03:26:33Z) - Output Feedback Tube MPC-Guided Data Augmentation for Robust, Efficient
Sensorimotor Policy Learning [49.05174527668836]
Imitation learning (IL) can generate computationally efficient sensorimotor policies from demonstrations provided by computationally expensive model-based sensing and control algorithms.
In this work, we combine IL with an output feedback robust tube model predictive controller to co-generate demonstrations and a data augmentation strategy to efficiently learn neural network-based sensorimotor policies.
We numerically demonstrate that our method can learn a robust visuomotor policy from a single demonstration--a two-orders of magnitude improvement in demonstration efficiency compared to existing IL methods.
arXiv Detail & Related papers (2022-10-18T19:59:17Z) - Efficient Federated Learning with Spike Neural Networks for Traffic Sign
Recognition [70.306089187104]
We introduce powerful Spike Neural Networks (SNNs) into traffic sign recognition for energy-efficient and fast model training.
Numerical results indicate that the proposed federated SNN outperforms traditional federated convolutional neural networks in terms of accuracy, noise immunity, and energy efficiency as well.
arXiv Detail & Related papers (2022-05-28T03:11:48Z) - ModelLight: Model-Based Meta-Reinforcement Learning for Traffic Signal
Control [5.219291917441908]
This paper proposes a novel model-based meta-reinforcement learning framework (ModelLight) for traffic signal control.
Within ModelLight, an ensemble of models for road intersections and the optimization-based meta-learning method are used to improve the data efficiency of an RL-based traffic light control method.
Experiments on real-world datasets demonstrate that ModelLight can outperform state-of-the-art traffic light control algorithms.
arXiv Detail & Related papers (2021-11-15T20:25:08Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
Navigating through intersections is one of the main challenging tasks for an autonomous vehicle.
In this work, we focus on the implementation of a system able to navigate through intersections where only traffic signs are provided.
We propose a multi-agent system using a continuous, model-free Deep Reinforcement Learning algorithm used to train a neural network for predicting both the acceleration and the steering angle at each time step.
arXiv Detail & Related papers (2021-04-28T07:54:40Z) - Multi-intersection Traffic Optimisation: A Benchmark Dataset and a
Strong Baseline [85.9210953301628]
Control of traffic signals is fundamental and critical to alleviate traffic congestion in urban areas.
Because of the high complexity of modelling the problem, experimental settings of current works are often inconsistent.
We propose a novel and strong baseline model based on deep reinforcement learning with the encoder-decoder structure.
arXiv Detail & Related papers (2021-01-24T03:55:39Z) - Deep traffic light detection by overlaying synthetic context on
arbitrary natural images [49.592798832978296]
We propose a method to generate artificial traffic-related training data for deep traffic light detectors.
This data is generated using basic non-realistic computer graphics to blend fake traffic scenes on top of arbitrary image backgrounds.
It also tackles the intrinsic data imbalance problem in traffic light datasets, caused mainly by the low amount of samples of the yellow state.
arXiv Detail & Related papers (2020-11-07T19:57:22Z) - Batch-Augmented Multi-Agent Reinforcement Learning for Efficient Traffic
Signal Optimization [9.456254189014127]
The proposed framework reduces traffic congestion by 36% in terms of waiting time compared with the currently used fixed-time traffic signal plan.
Our experiments show that the proposed framework reduces traffic congestion by 36% in terms of waiting time compared with the currently used fixed-time traffic signal plan.
arXiv Detail & Related papers (2020-05-19T17:53:05Z) - IG-RL: Inductive Graph Reinforcement Learning for Massive-Scale Traffic
Signal Control [4.273991039651846]
Scaling adaptive traffic-signal control involves dealing with state and action spaces.
We introduce Inductive Graph Reinforcement Learning (IG-RL) based on graph-convolutional networks.
Our model can generalize to new road networks, traffic distributions, and traffic regimes.
arXiv Detail & Related papers (2020-03-06T17:17:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.