論文の概要: Deep AutoAugment
- arxiv url: http://arxiv.org/abs/2203.06172v1
- Date: Fri, 11 Mar 2022 18:57:27 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-14 12:27:27.260234
- Title: Deep AutoAugment
- Title(参考訳): 深層オートオーグメント
- Authors: Yu Zheng, Zhi Zhang, Shen Yan, Mi Zhang
- Abstract要約: 我々はDeep AutoAugment(DeepAA)というデータ拡張検索のための完全自動化手法を提案する。
DeepAAは、収束に到達するまで、一度に1つの増層レイヤを積み重ねることで、スクラッチから多層データ拡張パイプラインを構築する。
実験の結果, 既定の増補がなくても, 従来よりも高い性能を達成した増補政策を学習できることが判明した。
- 参考スコア(独自算出の注目度): 22.25911903722286
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While recent automated data augmentation methods lead to state-of-the-art
results, their design spaces and the derived data augmentation strategies still
incorporate strong human priors. In this work, instead of fixing a set of
hand-picked default augmentations alongside the searched data augmentations, we
propose a fully automated approach for data augmentation search named Deep
AutoAugment (DeepAA). DeepAA progressively builds a multi-layer data
augmentation pipeline from scratch by stacking augmentation layers one at a
time until reaching convergence. For each augmentation layer, the policy is
optimized to maximize the cosine similarity between the gradients of the
original and augmented data along the direction with low variance. Our
experiments show that even without default augmentations, we can learn an
augmentation policy that achieves strong performance with that of previous
works. Extensive ablation studies show that the regularized gradient matching
is an effective search method for data augmentation policies. Our code is
available at: https://github.com/MSU-MLSys-Lab/DeepAA .
- Abstract(参考訳): 最近の自動化されたデータ拡張手法は最先端の結果をもたらすが、その設計空間と派生したデータ拡張戦略は依然として強力な人間の優先事項を取り入れている。
本研究では,手書きのデフォルト拡張を検索データ拡張と共に修正するのではなく,Deep AutoAugment (DeepAA) というデータ拡張検索のための完全自動アプローチを提案する。
deepaaは、拡張層を1つずつ積み重ねて収束するまで、段階的に多層データ拡張パイプラインをスクラッチから構築する。
各拡張層について、ポリシーは、元の勾配と、低分散の方向に沿った拡張データのコサイン類似性を最大化するために最適化される。
実験の結果, 既定の増補がなくても, 従来よりも高い性能を達成した増補政策を学習できることが判明した。
広範囲なアブレーション研究は、正規化勾配マッチングがデータ拡張ポリシーの効果的な探索法であることを示している。
私たちのコードは、https://github.com/MSU-MLSys-Lab/DeepAAで利用可能です。
関連論文リスト
- DualAug: Exploiting Additional Heavy Augmentation with OOD Data
Rejection [77.6648187359111]
そこで本稿では,textbfDualAug という新しいデータ拡張手法を提案する。
教師付き画像分類ベンチマークの実験では、DualAugは様々な自動データ拡張法を改善している。
論文 参考訳(メタデータ) (2023-10-12T08:55:10Z) - Dynamic Data Augmentation via MCTS for Prostate MRI Segmentation [19.780410411548935]
本稿ではDDAug(Dynamic Data Augmentation)を提案する。
DDAug計算は、様々な拡張を表現する階層木構造を開発する。
我々の手法は、現在の最先端データ拡張戦略より優れています。
論文 参考訳(メタデータ) (2023-05-25T06:44:43Z) - Advanced Data Augmentation Approaches: A Comprehensive Survey and Future
directions [57.30984060215482]
データ拡張の背景、レビューされたデータ拡張技術の新しい包括的分類法、および各技術の強さと弱点(可能ならば)を提供する。
また、画像分類、オブジェクト検出、セマンティックセグメンテーションなどの3つの一般的なコンピュータビジョンタスクに対して、データ拡張効果の総合的な結果を提供する。
論文 参考訳(メタデータ) (2023-01-07T11:37:32Z) - Local Magnification for Data and Feature Augmentation [53.04028225837681]
LOMA(Local Magnification)と呼ばれる,実装が容易かつモデルフリーなデータ拡張手法を提案する。
LOMAは、画像の局所領域をランダムに拡大することにより、追加のトレーニングデータを生成する。
実験の結果,提案するLOMAと標準データ拡張を組み合わせることで,画像分類や物体検出の性能を大幅に向上させることができることがわかった。
論文 参考訳(メタデータ) (2022-11-15T02:51:59Z) - Data-Efficient Augmentation for Training Neural Networks [15.870155099135538]
本稿では,データポイントのサブセットを選択するための厳密な手法を提案する。
SVHNのCIFAR10では6.3倍,SVHNでは2.2倍の高速化を実現し,様々なサブセットサイズでベースラインを最大10%向上させる。
論文 参考訳(メタデータ) (2022-10-15T19:32:20Z) - Smart(Sampling)Augment: Optimal and Efficient Data Augmentation for
Semantic Segmentation [68.8204255655161]
セマンティックイメージセグメンテーションに関する最初の研究を行い、textitSmartAugment と textitSmartSamplingAugment の2つの新しいアプローチを紹介した。
SmartAugmentはベイジアン最適化を使用して、拡張戦略の豊富なスペースを探索し、私たちが考慮しているすべてのセマンティックセグメンテーションタスクにおいて、新しい最先端のパフォーマンスを達成する。
SmartSamplingAugmentは、固定的な拡張戦略を備えたシンプルなパラメータフリーのアプローチで、既存のリソース集約型アプローチとパフォーマンスを競い合い、安価な最先端データ拡張手法を上回っている。
論文 参考訳(メタデータ) (2021-10-31T13:04:45Z) - Direct Differentiable Augmentation Search [25.177623230408656]
Direct Differentiable Augmentation Search (DDAS) と呼ばれる効率的な微分可能探索アルゴリズムを提案する。
1ステップの勾配更新と連続リラクゼーションでメタラーニングを活用し、期待されるトレーニング損失を有効活用し、効率的な検索を行う。
DDASは,検索コストを劇的に削減しつつ,最先端の性能と効率のトレードオフを実現する。
論文 参考訳(メタデータ) (2021-04-09T10:02:24Z) - GABO: Graph Augmentations with Bi-level Optimization [0.0]
本研究では,Ogbg-molhivデータセット上のグラフ分類問題に取り組むために,二段階最適化という手法を適用する。
GIN+virtual classifierでROCAUCスコア77.77 %を達成した。
このフレームワークは、GIN層拡張ジェネレータとバイアス変換を組み合わせて、最新のFLAG拡張を使用して拡張された同じ分類器を上回る。
論文 参考訳(メタデータ) (2021-04-01T19:00:17Z) - Adaptive Weighting Scheme for Automatic Time-Series Data Augmentation [79.47771259100674]
データ拡張のための2つのサンプル適応自動重み付けスキームを提案する。
提案手法を大規模でノイズの多い財務データセットとUCRアーカイブからの時系列データセット上で検証する。
金融データセットでは、取引戦略と組み合わせた手法が50 $%$以上の年間収益の改善につながることを示し、時系列データでは、データセットの半分以上で最新モデルを上回るパフォーマンスを発揮し、他のものと同様の精度を達成しています。
論文 参考訳(メタデータ) (2021-02-16T17:50:51Z) - Generalization in Reinforcement Learning by Soft Data Augmentation [11.752595047069505]
SODA(Soft Data Augmentation)は、政策学習からAugmentationを分離する手法である。
我々は、最先端のビジョンベースRL法によるトレーニングにおいて、サンプル効率、一般化、安定性を著しく向上するSODAを見出した。
論文 参考訳(メタデータ) (2020-11-26T17:00:34Z) - Improving 3D Object Detection through Progressive Population Based
Augmentation [91.56261177665762]
本稿では3次元オブジェクト検出のためのデータ拡張ポリシーの設計を自動化するための最初の試みを示す。
このアルゴリズムは,探索空間を狭め,過去の反復で発見された最良のパラメータを採用することで,拡張戦略の最適化を学習する。
PPBAは, 拡張のないベースライン3次元検出モデルよりも最大10倍のデータ効率が高く, ラベル付きモデルよりもはるかに少ない精度で3次元検出モデルが競合精度を達成できる可能性が示唆された。
論文 参考訳(メタデータ) (2020-04-02T05:57:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。